题目内容
【题目】如图,在Rt△ABC中,∠C90°,ACBC,AD是△ABC的角平分线,以D为圆心,DC为半径作⊙D,交AD于点E.
(1)判断直线AB与⊙D的位置关系并证明.
(2)若AC1,求的长.
【答案】(1)见解析;(2)
【解析】分析:(1)根据“作垂直,证相等”可证明AB与⊙D相切;
(2)分别求出所在圆的半径和圆心有的度数,代入弧长公式进行计算即可得解.
详解:(1)AB与⊙D相切.
证明:过点D作DF⊥AB,垂足为F.
∵AD是Rt△ABC的角平分线,∠C90°,
∴DFDC,
即dr,
∴AB与⊙D相切.
(2)∵∠C90°,ACBC1,∴∠BAC∠B45°,AB.
∵DF⊥AB,∴∠BDF∠B45°,∴BFDF.
∵AB、AC分别与⊙D相切,∴AFAC1.
设⊙D的半径为r.易得BF,BD,
∴,∴r.
∵AD是Rt△ABC的角平分线,∠BAC45°,
∴∠DAC ∠BAC22.5°.
又∵∠C90°,∴∠CDE67.5°.
∴.
练习册系列答案
相关题目