题目内容

【题目】如图,扇形OAB的半径OA=3,圆心角∠AOB=90°,点C是弧AB上异于A、B的动点,过点C作CD⊥OA于点D,作CE⊥OB于点E,连结DE,点F在线段DE上,且EF=2DF,过点C的直线CG交OA的延长线于点G,且∠CGO=∠CDE.
(1)求证:CG与弧AB所在圆相切.
(2)当点C在弧AB上运动时,△CFD的三条边是否存在长度不变的线段?若存在,求出该线段的长度;若不存在,说明理由.
(3)若∠CGD=60°,求图中阴影部分的面积.

【答案】
(1)证明:如图:

∵点C作CD⊥OA于点D,作CE⊥OB于点E,

∴∠CDO=∠CEO=90°,

∵∠DOE=90°,

∴ODCE是矩形,

∴∠CDE+∠EDO=90°,∠EDO=∠COD.

∵∠CGO=∠CDE,

∴∠CGO+COD=90°,

∴∠OCG=90°,

∵CG经过半径OC的外端,

∴CG是⊙O的切线,即CG与弧AB所在圆相切


(2)解:DF不变.

在矩形ODCE中,∵DE=OC=3,EF=2DF,∴DF= DE= OC=1,

DF的长不变,DF=1


(3)解:∵∠CGD=60°,

∴∠COD=30°,

∴CD=OCsin∠COD= OC= ,OD=OCcos∠COD= OC=

图中阴影部分的面积 ×π×32 CDOD=


【解析】(1)根据矩形的判断,可得OCDE的形状,根据矩形的性质,可得∠CDE+∠EDO=90°,∠EDO=∠COD,根据余角的性质,可得∠CGO+COD=90°,根据切线的判定,可得答案;(2)根据矩形的性质,可得CD的长,根据EF与DF的关系,可得DF的长;(3)根据锐角三角函数,可得CD、OD的长,根据根据图形割补法,可得阴影的面积.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网