题目内容
【题目】意外创伤随时可能发生,急救是否及时、妥善,直接关系到病人的安危.为普及急救科普知识,提高学生的急救意识与现场急救能力,某校开展了急救知识进校园培训活动.为了解七、八年级学生(七、八年级各有600名学生)的培训效果,该校举行了相关的急救知识竞赛.现从两个年级各随机抽取20名学生的急救知识竞赛成绩(百.分制)进行分析,过程如下:
收集数据:
七年级:79,85,73,80,75,76,87,70,75,94,75,78,81,72,75,80,86,59,83,77.
八年级:92,74,87,82,72,81,94,83,77,83,80,81,71,81,72,77,82,80,70,41.
整理数据:
40≤x≤49 | 50≤x≤59 | 60≤x≤69 | 70≤x≤79 | 80≤x≤89 | 90≤x≤100 | |
七年级 | 0 | 1 | 0 | a | 7 | 1 |
八年级 | 1 | 0 | 0 | 7 | b | 2 |
分析数据:
平均数 | 众数 | 中位数 | |
七年级 | 78 | 75 | c |
八年级 | 78 | d | 80.5 |
应用数据:
(1)由上表填空:a= ;b= ;c= ;d= .
(2)估计该校七、八两个年级学生在本次竞赛中成绩在80分及以上的共有多少人?
(3)你认为哪个年级的学生对急救知识掌握的总体水平较好,请说明理由.
【答案】(1)11,10,78.5,81;(2)600人;(3)八年级学生总体水平较好.理由:两个年级平均分相同,但八年级中位数更大,或八年级众数更大.(言之成理即可).
【解析】
(1)根据已知数据及中位数和众数的概念求解可得;
(2)利用样本估计总体思想求解可得;
(3)答案不唯一,合理均可.
解:(1)由题意知a=11,b=10,
将七年级成绩重新排列为:59,70,72,73,75,75,75,76,77,77,78,79,80,80,81,83,85,86,87,94,
∴其中位数c==78.5,
八年级成绩的众数d=81,
故答案为:11,10,78.5,81;
(2)由样本数据可得,七年级得分在80分及以上的占=,
故七年级得分在80分及以上的大约600×=240人;
八年级得分在80分及以上的占=,
故八年级得分在80分及以上的大约600×=360人.
故共有600人.
(3)该校八年级学生对急救知识掌握的总体水平较好.
理由:两个年级平均分相同,但八年级中位数更大,或八年级众数更大.(言之成理即可).
【题目】已知甲、乙两辆汽车分别从、两地同时匀速出发,甲车开往地,乙车开往地,设甲、乙两车距地的路程分别为、(单位:),甲车的行驶时间为(单位:).若甲车的速度为,与之间的对应关系如下表:
2 | 5 | |
560 | 320 |
(1)分别求出、与之间的函数关系式;(不写的取值范围)
(2)当为何值时,甲、乙两辆汽车相遇?
(3)当两车距离小于时,求的取值范围.
【题目】如图,在半中,P是直径AB上一动点,且,过点P作交半于点C,P为垂足,连接BC,过点P作于点D.
小明根据学习函数的经验,对线段AP,CP,PD的长度之间的关系进行了探究.下面是小明的探究过程,请补充完整:
(1)对于动点P在AB上的不同位置,画图,测量,得到了线段AP,CP,PD的长度的几组值,如下表:
位置1 | 位置2 | 位置3 | 位置4 | 位置5 | 位置6 | 位置7 | 位置8 | 位置9 | 位置10 | |
0.37 | 0.88 | 1.59 | 2.01 | 2.44 | 3.00 | 3.58 | 4.37 | 5.03 | 5.51 | |
1.45 | 2.12 | 2.65 | 2.83 | 2.95 | 3.00 | 2.95 | 2.67 | 2.21 | 1.65 | |
1.40 | 1.96 | 2.27 | 2.31 | 2.27 | 2.13 | 1.87 | 1.39 | 0.89 | 0.48 |
在AP,CP,PD的长度这三个量中,确定________的长度是自变量, ________的长度和________的长度都是这个自变量的函数;
(2)在同一平面直角坐标系xOy中,画出(1)中所确定的函数的图象;
(3)结合函数图象,解决问题:当时,AP的长度约为________.