题目内容
3
对四边形面积相等,它们是S?AEPG=S?PHCF,S?ABHG=S?EBCF,S?AEFD=S?CDGH
.分析:根据平行四边形的性质可得,S△ABD=S△DBC,S△BEP=S△BHP,S△GPD=S△DPF,根据三角形的面积相等,推出平行四边形的面积相等,即S?AEPG=S?PHCF,从而得到S?ABGH=S?EBCF,同理,S?AEFD=S?CDGH.
解答:解∵在平行四边形ABCD中,BD是对角线,EF∥BC,GH∥AB,
∴S△ABD=S△DBC,S△BEP=S△BHP,S△GPD=S△DPF,
∴S△ABD-S△BEP-S△GPD=S△DBC-S△BHP-S△DPF,
∴S?AEPG=S?PHCF,
∴S?AEPG+S?EBHP=S?PHCF+S?EBHP,
即,S?ABGH=S?EBCF,
同理,S?AEFD=S?CDGH,
∴图中有3对四边形面积相等,即:S?AEPG=S?PHCF,S?ABHG=S?EBCF,S?AEFD=S?CDGH.
∴S△ABD=S△DBC,S△BEP=S△BHP,S△GPD=S△DPF,
∴S△ABD-S△BEP-S△GPD=S△DBC-S△BHP-S△DPF,
∴S?AEPG=S?PHCF,
∴S?AEPG+S?EBHP=S?PHCF+S?EBHP,
即,S?ABGH=S?EBCF,
同理,S?AEFD=S?CDGH,
∴图中有3对四边形面积相等,即:S?AEPG=S?PHCF,S?ABHG=S?EBCF,S?AEFD=S?CDGH.
点评:本题主要考查了平行四边形的性质,解答本题的关键,是掌握平行四边形被一条对角线分成的两个三角形的面积相等,使学生能够灵活运用平行四边形的知识解决有关问题.
练习册系列答案
相关题目
| 2 |
| 3 |
| 5 |
| A、AC⊥BD |
| B、四边形ABCD是菱形 |
| C、△ABO≌△CBO |
| D、AC=BD |