题目内容

【题目】已知函数y=ax2﹣2ax﹣1(a是常数,a≠0),下列结论正确的是(
A.当a=1时,函数图象过点(﹣1,1)
B.当a=﹣2时,函数图象与x轴没有交点
C.若a>0,则当x≥1时,y随x的增大而减小
D.不论a为何值,函数图象必经过(2,﹣1)

【答案】D
【解析】解:a=1,x=﹣1时,y=1﹣2×(﹣1)﹣1=2,所以A错误;

当a=﹣2时,y=﹣2x2﹣4x﹣1,△=(﹣4)2﹣4×(﹣2)×(﹣1)=8>0,与x轴有两个交点,所以B错误;

对称轴x= =1,a>0,所以则当x≥1时,y随x的增大而增大,所以C错误;

当x=2时,y=4a﹣4a﹣1=﹣1,所以D正确,

故选D.

【考点精析】本题主要考查了二次函数的性质和二次函数图象以及系数a、b、c的关系的相关知识点,需要掌握增减性:当a>0时,对称轴左边,y随x增大而减小;对称轴右边,y随x增大而增大;当a<0时,对称轴左边,y随x增大而增大;对称轴右边,y随x增大而减小;二次函数y=ax2+bx+c中,a、b、c的含义:a表示开口方向:a>0时,抛物线开口向上; a<0时,抛物线开口向下b与对称轴有关:对称轴为x=-b/2a;c表示抛物线与y轴的交点坐标:(0,c)才能正确解答此题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网