题目内容

【题目】四边形ABCD是正方形,E、F分别是DC和CB的延长线上的点,且DE=BF,连接AE、AF、EF.
(1)求证:△ADE≌△ABF;
(2)若BC=8,DE=6,求△AEF的面积.

【答案】
(1)证明:∵四边形ABCD是正方形,

∴AD=AB,∠D=∠ABC=90°,

而F是CB的延长线上的点,

∴∠ABF=90°,

在△ADE和△ABF中,

∴△ADE≌△ABF(SAS)


(2)解:∵BC=8,

∴AD=8,

在Rt△ADE中,DE=6,AD=8,

∴AE= =10,

∵△ABF可以由△ADE绕旋转中心 A点,按顺时针方向旋转90°得到,

∴AE=AF,∠EAF=90°,

∴△AEF的面积= AE2= ×100=50


【解析】(1)根据正方形的性质得AD=AB,∠D=∠ABC=90°,然后利用“SAS”易证得△ADE≌△ABF;(2)先利用勾股定理可计算出AE=10,再根据△ABF可以由△ADE绕旋转中心A点,按顺时针方向旋转90°得到AE=AF,∠EAF=90°,然后根据直角三角形的面积公式计算即可.
【考点精析】关于本题考查的正方形的性质,需要了解正方形四个角都是直角,四条边都相等;正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角;正方形的一条对角线把正方形分成两个全等的等腰直角三角形;正方形的对角线与边的夹角是45o;正方形的两条对角线把这个正方形分成四个全等的等腰直角三角形才能得出正确答案.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网