题目内容
【题目】设k是任意实数,讨论关于x的方程|x2﹣1|=x+k的解的个数.
【答案】答案见解析.
【解析】
先根据x的范围去绝对值,(1)当x>1或x<﹣1,方程变为x2﹣x=1+k,要求方程解的个数就是要二次函数y=x2﹣x与直线y=1+k的交点个数,可求出二次函数y=x2﹣x的顶点(,-),且过(0,0),(1,0)两点,则当1+k<0,原方程无实根;当1+k≥2,原方程有两个实根;当0≤1+k<2,原方程有一个实根;当1+k<0,原方程无实根.(2)当﹣1≤x≤1,方程变为x2+x=1﹣k,和(1)的解法一样求出k的范围.
解:(1)当x>1或x<﹣1,方程变为x2﹣x=1+k,则方程解的个数就是二次函数y=x2﹣x与直线y=1+k的交点个数,二次函数y=x2﹣x的顶点(,-),且过(0,0),(1,0)两点.
当0≤1+k<2,即﹣1≤k<1,二次函数y=x2﹣x与直线y=1+k在所在范围有一个交点,所以原方程有一个实根;
当1+k≥2,即k≥1,二次函数y=x2﹣x与直线y=1+k在所在范围有两个交点,所以原方程有两个实根;
当1+k<0,即k<﹣1,二次函数y=x2﹣x与直线y=1+k无交点,所以原方程无实根.
(2)当﹣1≤x≤1,方程变为x2+x=1﹣k,则方程解的个数就是二次函数y=x2+x与直线y=1﹣k的交点个数,二次函数y=x2+x的顶点(-,-),且过(0,0),(﹣1,0)两点.
当1﹣k>0,即k<1,二次函数y=x2+x与直线y=1﹣k在所在范围无交点,所以原方程无实根;
当-<1﹣k≤0,即1≤k<,二次函数y=x2+x与直线y=1﹣k有两个交点,所以原方程有两个实根;
当1﹣k=-,即k=,二次函数y=x2+x与直线y=1﹣k有一个交点,所以原方程有一个实根;
当1﹣k<-,即k>,二次函数y=x2+x与直线y=1﹣k没有交点,所以原方程无实根.
所以当k<﹣或﹣1<k<1或k>时,原方程没有实数根;当k=﹣或k=时,原方程只有一个实数根;当-<k≤﹣1或1≤k<时,原方程有两个实数根.