题目内容

【题目】(2015南通)如图,在ABCD中,点EF分别在ABDC上,且EDDBFBBD

(1)求证:AED≌△CFB

(2)若∠A=30°,DEB=45°,求证:DA=DF

【答案】答案见解析.

【解析】试题分析:(1)由平行四边形的性质得到对边平行且相等,对角相等,再由垂直的定义得到一对直角相等,利用等式的性质等到一对角相等,利用ASA即可得证;

(2)过点DDHAB,在Rt△ADH中,有AD=2DH,在Rt△DEB中,有EB=2DH,易得四边形EBFD为平行四边形,利用平行四边形的对边相等得到EB=DF,等量代换即可得证.

试题解析:(1)∵四边形ABCD是平行四边形,∴AD=CB,∠A=∠C,AD//CB,

∴∠ADB=∠CBD,

∵EDDB,FBBD,∴∠EDB=∠FBD=90°,∴∠ADE=∠CBF,

在△AED和△CFB中,∠ADE=∠CBD,AD=BC,∠A=∠C,∴△AED△CFB(ASA);

(2)作DHAB,垂足为H,

R t△ADH在,∠A=30°,∴AD=2DH,

Rt△DEB中,∠DEB=45°,∴EB=2DH,

∵∠EDB=∠FBD=90°,∴DE//BF,又∵DC//AB,∴四边形DEBF是平行四边形,

∴FD=BE,∴DA=DF.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网