题目内容
【题目】如图,AB为⊙O直径,C是⊙O上一点,CO⊥AB于点O,弦CD与AB交于点F,过点D作∠CDE,使∠CDE=∠DFE,交AB的延长线于点E.过点A作⊙O的切线交ED的延长线于点G.
(1)求证:GE是⊙O的切线;
(2)若OF:OB=1:3,求AG的长.
【答案】(1)见解析;(2)AG=6.
【解析】
试题分析:(1)连接OD,进而利用等腰三角形的性质以及切线的性质得出∠CDO+∠CDE=90°,进而得出答案;
(2)首先利用勾股定理得出DE的长,再利用相似三角形的判定与性质得出AG的长.
(1)证明:连接OD.
∵OC=OD,
∴∠C=∠ODC,
∵OC⊥AB,
∴∠COF=90°
∴∠OCD+∠CFO=90°,
∴∠ODC+∠CFO=90°,
∵∠EFD=∠FDE,
∠EFD=∠CDE,
∴∠CDO+∠CDE=90°,
∴DE为⊙O的切线;
(2)解:∵OF:OB=1:3,⊙O的半径为3,
∴OF=1,
∵∠EFD=∠EDF,
∴EF=ED,
在Rt△ODE中,OD=3,DE=x,则EF=x,OE=1+x,
∵OD2+DE2=EO2,
∴32+x2=(x+1)2,
解得:x=4,
∴DE=4,OE=5,
∵AG为⊙O的切线,
∴AG⊥AE,
∴∠GAE=90°,
∵∠OED=∠GEA,
∴Rt△EOD∽Rt△EGA,
∴=
=
,
即=
,
解得:AG=6.
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目
【题目】抛物线y=ax2+bx+c(a≠0)上部分点的横坐标x,纵坐标y的对应值如表:
x | … | ﹣1 | 0 | 1 | 2 | 3 | 4 | … |
y | … | ﹣ | 1 | 3 | 1 | … |
从上表可知,下列说法错误的是( )
A.对称轴为直线x=2
B.图象开口向下
C.顶点坐标(2,3)
D.当x=5时,y=