题目内容

【题目】综合题
(1)【问题提出】如图1.△ABC是等边三角形,点D在线段AB上.点E在直线BC上.且∠DEC=∠DCE.求证:BE=AD;

(2)【类比学习】如图2.将条件“点D在线段AB上”改为“点D在线段AB的延长线上”,其他条件不变.判断线段AB,BE,BD之间的数量关系,并说明理由.

(3)【扩展探究】如图3.△ABC是等腰三角形,AB=AC,∠BAC=120°,点D在线段AB的反向延长线上,点E在直线BC上,且∠DEC=∠DCE,【类比学习】中的线段AB、BE、BD之间的数量关系是否还成立?若成立,请说明理由;若不成立,请直接写出线段AB,BE,BD之间的数量.

【答案】
(1)证明:作DF∥BC交AC于F,如图1所示:

则∠ADF=∠ABC,∠AFD=∠ACB,∠FDC=∠DCE,

∵△ABC是等腰三角形,∠A=60°,

∴△ABC是等边三角形,

∴∠ABC=∠ACB=60°,

∴∠DBE=120°,∠ADF=∠AFD=60°=∠A,

∴△ADF是等边三角形,∠DFC=120°,

∴AD=DF,

∵∠DEC=∠DCE,

∴∠FDC=∠DEC,ED=CD,

在△DBE和△CFD中,

∴△DBE≌△CFD(AAS),

∴EB=DF,

∴EB=AD


(2)解:EB=AB+BD;理由如下:

作DF∥BC交AC的延长线于F,如图2所示:

同(1)得:AD=DF,∠FDC=∠ECD,∠FDC=∠DEC,ED=CD,

又∵∠DBE=∠DFC=60°,

∴在△DBE和△CFD中,

∴△DBE≌△CFD(AAS),

∴EB=DF,

∴EB=AD,

∴EB=AB+BD


(3)解: BE=3DB﹣3AB.

理由:作DF∥BC交CA的延长线于F,如图3所示,

则∠ADF=∠ABC,∠AFD=∠ACB,∠FDC+∠DCE=180°,

∵△ABC是等腰三角形,

∴∠ABC=∠ACB,

∴∠ADF=∠AFD=∠ABC,

∵∠DEC=∠DCE,

∴DE=DC,∠FDC+∠DEC=180°,

∵∠DEC+∠DEB=180°,

∴∠FDC=∠DEB,

在△DBE和△CFD中,

∴△DBE≌△CFD(AAS),

∴EB=DF,DB=CF,

∵CF=AC+AF=AB+AF,

∴DB=AB+AF,

过点A作AG⊥DF于G,

∵AF=AD,

∴DF=2FG,

在Rt△AFG中,∠AFG=90°﹣∠FAG=90°﹣ ∠BAC=30°,

∴FG= AF,

∴EB=DF=2FG= AF,

∴AF= EB

∴DB=AB+ BE,

即: BE=3DB﹣3AB.


【解析】(1)作DF∥BC交AC于F,首先证明△ABC是等边三角形,然后再由AAS证明△DBE≌△CFD,得出EB=DF,即可得出结论;
(2)作DF∥BC交AC的延长线于F,首先证明△DBE≌△CFD,从而可得到EB=DF,即可得出结论;
(3)作DF∥BC交CA的延长线于F,首先证明△DBE≌△CFD,从而可得到EB=DF,再利用含30°的直角三角形的性质即可得出结论.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网