题目内容
【题目】在△ABC 中,AB BC AC,∠A ∠B ∠C 60°.点 D、E 分别是边 AC、AB 上的点(不与 A、B、C 重合),点 P 是平面内一动点.设∠PDC=∠1,∠PEB=∠2,∠DPE=∠α.
(1)若点 P 在边 BC 上运动(不与点 B 和点 C 重合),如图⑴所示,则∠1+∠2 .(用 α 的代数式表示)
(2)若点 P 在△ABC 的外部,如图⑵所示,则∠α、∠1、∠2 之间有何关系?写出你的结论,并说明理由.
(3)当点 P 在边 BC 的延长线上运动时,试画出相应图形,并写出∠α、∠1、∠2 之间的关系式.(不需要证明)
【答案】(1)如图(1)60 α ;(2)∠2=60 ∠1 α;理由见解析;(3)如图(3)时,2 1 60 α,如图(4)时,∠2 ∠1=60 α.
【解析】
(1)根据四边形内角和定理以及邻补角的定义得出∠1+∠2=∠C+∠α,进而得出即可;
(2)利用三角形内角和定理以及邻补角的性质可得出∠α=∠1-∠2+60°;
(3)利用三角外角的性质得出.需要分类讨论,如图所示.
(1)如图(1),∵∠1+∠2+∠ADP+∠AEP=360°,∠A+α+∠ADP+∠AEP=360°,
∴∠1+∠2=∠A+α,
∵△ABC是等边三角形,
∴∠A=60°,
∴∠1+∠2=60°+α.
故答案是:60°+α;
(2)∠2=60 ∠1 α,
证明:如图(2),
∵ 1 是△POD 的外角,
∴∠1=α+∠POD,
∵∠POD=∠AOE,
∴∠1=α+∠AOE,
∴∠AOE=∠1,
∵∠2 是△AOE 的外角,
∴∠2=∠A ∠AOE,
∴∠2=60 ∠1 α;
(3)两种情况如下:
如图(3)时,2 1 60 α,
如图(4)时,∠2 ∠1=60 α.