题目内容
【题目】△ABC中,AB=AC,D是BC边上任意一点,以点A为中心,取旋转角等于∠BAC,把△ABD绕点A逆时针旋转得到△ACM.
(1)如图1,若∠BAC=50°,则∠BCM= ;
(2)如图2,在BC上取点E,使∠DAE=∠BAC,求证:DE<BD+EC;
(3)如图3,在(2)的条件下,若∠BAC=90°,BD=1,EC=2,求DE的长.
【答案】(1)∠BCM=130°;(2)证明见解析;(3)DE=.
【解析】试题分析:(1)由等腰三角形的性质可得∠B=∠C=65°,再由旋转的性质得到∠ACM=∠B,即可得到结论.
(2)连接EM.由旋转的性质得到AD=AM,∠BAD=∠MAC,进而有∠DAM=∠BAC.由SAS证明△ADE≌△AME,得到ME=DE.再由三角形三边关系即可得到结论;
(3)连接EM.可得到三角形ECM为直角三角形,由勾股定理可求出EM的长,进而得到DE的长.
试题解析:解:(1)∵AB=AC,∴∠B=∠C.∵∠BAC=50°,∴∠B=∠C=(180°-50°)÷2=65°.∵∠ACM=∠B,∴∠BCM=∠BCA+∠ACM=65°+65°=130°.
(2)连接EM.∵△ABD绕点A逆时针旋转到△ACM,∴AD=AM,∠BAD=∠MAC,
∴∠BAD+∠DAC=∠MAC+∠DAC,即∠DAM=∠BAC.
∵∠DAE=∠BAC,∴∠DAE=∠DAM,∴∠DAE=∠MAE .
∵AE=AE,∴△ADE≌△AME(SAS),∴ME=DE.
∵ME<MC+EC,MC=BD,∴DE<BD+EC.
(3)连接EM.∵AB=AC,∠BAC=90°,∴∠B=∠ACB=45°.
∵△ABD绕点A逆时针旋转到△ACM,∴CM=BD=1,∠ACM=∠B=45°, ∴∠ECM=90°.
∵EC=2, ∴ME=.由(2)知DE=ME,∴DE=.
【题目】下表是中国电信两种“套餐”计费方式.(月基本费固定收,主叫不超过主叫时间,流量不超上网流量不再收取额外费用费,主叫超时和上网超流量部分加收超时费和超流量费)
月基本费/元 | 主叫通话/分钟 | 上网流量/MB | 接听 | 主叫超时(元/分钟) | 超出流量(元/MB) | |
套餐1 | 49 | 200 | 500 | 免费 | 0.20 | 0.3 |
套餐2 | 69 | 250 | 600 | 免费 | 0.15 | 0.2 |
(1)6月小王主叫通话时间220分钟,上网流量800MB.按套餐1计费需 元,按套餐2计费需 元;
若他按套餐2计费需129元,主叫通话时间为240分钟,则他上网使用了 MB流量;
(2)若上网流量为540MB,是否存在某主叫通话时间(分钟),按套餐1和套餐2的计费相等?若存在,请求出的值;若不存在,请说明理由.