题目内容
【题目】为实施“农村留守儿童关爱计划”,某校结全校各班留守儿童的人数情况进行了统计,发现各班留守儿童人数只有1名、2名、3名、4名、5名、6名共六种情况,并制成如下两幅不完整的统计图:
(1)求该校平均每班有多少名留守儿童?并将该条形统计图补充完整;
(2)某爱心人士决定从只有2名留守儿童的这些班级中,任选两名进行生活资助,请用列表法或画树状图的方法,求出所选两名留守儿童来自同一个班级的概率.
【答案】解:(1)该校班级个数为4÷20%=20(个),
只有2名留守儿童的班级个数为:20﹣(2+3+4+5+4)=2(个),
该校平均每班留守儿童的人数为:
=4(名),
补图如下:
(2)由(1)得只有2名留守儿童的班级有2个,共4名学生.设A1,A2来自一个班,B1,B2来自一个班,
有树状图可知,共有12中等可能的情况,其中来自一个班的共有4种情况,
则所选两名留守儿童来自同一个班级的概率为:=.
【解析】
(1)首先求出班级数,然后根据条形统计图求出只有2名留守儿童的班级数,再求出总的留守儿童数,最后求出每班平均留守儿童数;
(2)利用树状图确定可能种数和来自同一班的种数,然后就能算出来自同一个班级的概率.
练习册系列答案
相关题目