题目内容
【题目】如图,已知抛物线与轴交于,且点,与轴交于点,其对称轴为直线.
(1)求这条抛物线的解析式;
(2)若在轴上方的抛物线上有点,使的内心恰好在轴上,求此时的面积;
(3)在直线上方的抛物线上有一动点,过作轴,垂足为是否存在点,使得以为顶点的三角形与相似?若存在,请求出符合条件的点的坐标;若不存在,请说明理由.
【答案】(1);(2)4;(3)存在,点为.
【解析】
(1)将点A、B的坐标代入并结合对称轴公式即可求出二次函数的解析式;
(2)根据三角形内心的性质可得x轴平分,设交轴于点,利用ASA证出△EBO≌△CBO,即可求出点E的坐标,然后根据对称性求出点B的坐标,利用待定系数法即可求出直线BD的解析式,联立方程即可求出点D的坐标,根据三角形中线的性质即可求出结论;
(3)设点的横坐标为,则点的纵坐标为:,然后根据点P的位置分类讨论,在每种情况下根据相似三角形的对应情况分类讨论,分别画出对应的图形,根据相似三角形的性质即可求出结论.
解:(1)由题意可得
解得:
∴这条抛物线的解析式为;
(2)的内心在轴上,
轴平分,设交轴于点,
∴∠EBO=∠CBO,
∵BO=BO,∠BOE=∠BOC=90°
∴△EBO≌△CBO
∴OE=OC=2
则,
∵,抛物线的对称轴为直线
∴点B的坐标为(4,0)
设直线BD的解析式为
将点B和点E的坐标代入,得
解得:
所以直线为,
联立
解得:或,其中(4,0)为点B的坐标
,
∴此时为的中点,
.
(3)存在,设点的横坐标为,则点的纵坐标为:
当时,,
,
①当时,
∴
即,
解得, (舍去),
;
②当时,
,
即,
解得, (均不合题意,舍去),
当0<时,
③∵∠OAC>∠OBC>∠MBO
∴不存在点P,使
④当时,
解得:解得, (均不合题意,舍去),
综上所述,符合条件的点为.
【题目】某生产商存有1200千克产品,生产成本为150元/千克,售价为400元千克.因市场变化,准备低价一次性处理掉部分存货,所得货款全部用来生产产品,产品售价为200元/千克.经市场调研发现,产品存货的处理价格(元/千克)与处理数量(千克)满足一次函数关系(),且得到表中数据.
(千克) | (元/千克) |
200 | 350 |
400 | 300 |
(1)请求出处理价格(元千克)与处理数量(千克)之间的函数关系;
(2)若产品生产成本为100元千克,产品处理数量为多少千克时,生产产品数量最多,最多是多少?
(3)由于改进技术,产品的生产成本降低到了元/千克,设全部产品全部售出,所得总利润为(元),若时,满足随的增大而减小,求的取值范围.