题目内容

在平面直角坐标系xOy中,点分别在轴、轴的正半轴上,且,点为线段的中点.

(1)如图1,线段的长度为________________;

(2)如图2,以为斜边作等腰直角三角形,当点在第一象限时,求直线所对应的函数的解析式;

(3)如图3,设点分别在轴、轴的负半轴上,且,以为边在第三象限内作正方形,请求出线段长度的最大值,并直接写出此时直线所对应的函数的解析式.

 

 

【答案】

(1)5 (2)直线OC所对应的函数解析式为(3)线段MG取最大值10+

此时直线MG的解析式

【解析】

试题分析:(1)根据直角三角形的斜边中线等于斜边的一半得线段的长度为5.

为斜边作等腰直角三角形,当点在第一象限时,过点C分别作CP⊥x轴于P,CQ⊥y轴于Q.

所以∠CQB=∠CPA=90°,又有∠QOP=90°,∠QCP=90°.∠BCA=90°,∠BCQ=∠ACP.BC=AC,

可证得△BCQ≌△ACP.从而得CQ=CP.不妨设C点的坐标为(a,a)(其中).

设直线OC所对应的函数解析式为,解得k=1,所以直线OC所对应的函数解析式为(3)取DE的中点N,连结ON、NG、OM.因为∠AOB=90°,所以OM=.同理得ON=5.

在正方形DGFE,N为DE中点,DE=10,由勾股定理得NG=.在点M与G之间总有MO+ON+NG由于∠DNG的大小为定值,只要,且M、N关于点O中心对称时,M、O、N、G四点共线,此时等号成立.这时线段MG取最大值10+

此时直线MG的解析式

试题解析:(1)5

(2)如图1,过点C分别作CP⊥x轴于P,CQ⊥y轴于Q.

∴∠CQB=∠CPA=90°,

∵∠QOP=90°,

∴∠QCP=90°.

∵∠BCA=90°,

∴∠BCQ=∠ACP.

∵BC=AC,

∴△BCQ≌△ACP.

∴CQ=CP.

∵点在第一象限,

∴不妨设C点的坐标为(a,a)(其中).

设直线OC所对应的函数解析式为

,解得k=1,

∴直线OC所对应的函数解析式为.           4分

(3)取DE的中点N,连结ON、NG、OM.

∵∠AOB=90°,

∴OM=

同理ON=5.

∵正方形DGFE,N为DE中点,DE=10,

∴NG=

在点M与G之间总有MO+ON+NG(如图2),

由于∠DNG的大小为定值,只要,且M、N关于点O中心对称时,M、O、N、G四点共线,此时等号成立(如图3).

∴线段MG取最大值10+

此时直线MG的解析式

考点:1.直角三角形斜边中线等于斜边一半,2.在直角坐标系中求点的坐标,3.待定系数法求一次函数解析式.

 

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网