题目内容

【题目】如图,直线y=﹣x+b与反比例函数y= 的图象相交于A(1,4),B两点,延长AO交反比例函数图象于点C,连接OB.
(1)求k和b的值;
(2)直接写出一次函数值小于反比例函数值的自变量x的取值范围;
(3)在y轴上是否存在一点P,使S△PAC= S△AOB?若存在请求出点P坐标,若不存在请说明理由.

【答案】
(1)解:将A(1,4)分别代入y=﹣x+b和

得:4=﹣1+b,4= ,解得:b=5,k=4


(2)解:一次函数值小于反比例函数值的自变量x的取值范围为:x>4或0<x<1
(3)解:过A作AN⊥x轴,过B作BM⊥x轴,

由(1)知,b=5,k=4,

∴直线的表达式为:y=﹣x+5,反比例函数的表达式为:

,解得:x=4,或x=1,

∴B(4,1),

过A作AE⊥y轴,过C作CD⊥y轴,设P(0,t),

∴S△PAC= OPCD+ OPAE= OP(CD+AE)=|t|=3,

解得:t=3,t=﹣3,

∴P(0,3)或P(0,﹣3).


【解析】(1)由待定系数法即可得到结论;(2)根据图象中的信息即可得到结论;(3)过A作AM⊥x轴,过B作BN⊥x轴,由(1)知,b=5,k=4,得到直线的表达式为:y=﹣x+5,反比例函数的表达式为: 列方程 ,求得B(4,1),于是得到 ,由已知条件得到 ,过A作AE⊥y轴,过C作CD⊥y轴,设P(0,t),根据三角形的面积公式列方程即可得到结论.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网