题目内容

【题目】已知:如图,AB是⊙O的直径,C是⊙O上一点,OD⊥BC于点D,过点C作⊙O的切线,交OD的延长线于点E,连接BE.
(1)求证:BE与⊙O相切;
(2)连接AD并延长交BE于点F,若OB=9,sin∠ABC= ,求BF的长.

【答案】
(1)证明:连接OC,

∵OD⊥BC,

∴∠COE=∠BOE,

在△OCE和△OBE中,

∴△OCE≌△OBE,

∴∠OBE=∠OCE=90°,即OB⊥BE,

∵OB是⊙O半径,

∴BE与⊙O相切.


(2)解:过点D作DH⊥AB,连接AD并延长交BE于点F,

∵∠DOH=∠BOD,∠DHO=∠BDO=90°,

∴△ODH∽△OBD,

= =

又∵sin∠ABC= ,OB=9,

∴OD=6,

易得∠ABC=∠ODH,

∴sin∠ODH= ,即 =

∴OH=4,

∴DH= =2

又∵△ADH∽△AFB,

= =

∴FB=


【解析】(1)连接OC,先证明△OCE≌△OBE,得出EB⊥OB,从而可证得结论.(2)过点D作DH⊥AB,根据sin∠ABC= ,可求出OD=6,OH=4,HB=5,然后由△ADH∽△AFB,利用相似三角形的性质得出比例式即可解出BF的长.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网