题目内容

【题目】自主学习,请阅读下列解题过程.
解一元二次不等式:x2﹣5x>0.
解:设x2﹣5x=0,解得:x1=0,x2=5,则抛物线y=x2﹣5x与x轴的交点坐标为(0,0)和(5,0).画出二次函数y=x2﹣5x的大致图象(如图所示),由图象可知:当x<0,或x>5时函数图象位于x轴上方,此时y>0,即x2﹣5x>0,所以,一元二次不等式x2﹣5x>0的解集为:x<0或x>5.
通过对上述解题过程的学习,按其解题的思路和方法解答下列问题:

(1)上述解题过程中,渗透了下列数学思想中的 . (只填序号)
①转化思想 ②分类讨论思想 ③数形结合思想
(2)一元二次不等式x2﹣5x<0的解集为
(3)用类似的方法写出一元二次不等式的解集:x2﹣2x﹣3>0.

【答案】
(1)①;③
(2)0<x<5
(3)x<﹣1或x>3
【解析】解:(1)上述解题过程中,渗透了下列数学思想中的①和③;
所以答案是:①,③;(2)由图象可知:当0<x<5时函数图象位于x轴下方,
此时y<0,即x2﹣5x<0,
∴一元二次不等式x2﹣5x<0的解集为:0<x<5;
所以答案是:0<x<5.(3)设x2﹣2x﹣3=0,
解得:x1=3,x2=﹣1,
∴抛物线y=x2﹣2x﹣3与x轴的交点坐标为(3,0)和(﹣1,0).
画出二次函数y=x2﹣2x﹣3的大致图象(如图所示),
由图象可知:当x<﹣1,或x>3时函数图象位于x轴上方,
此时y>0,即x2﹣2x﹣3>0,
∴一元二次不等式x2﹣2x﹣3>0的解集为:x<﹣1或x>3.
所以答案是x<﹣1或x>3

【考点精析】利用抛物线与坐标轴的交点对题目进行判断即可得到答案,需要熟知一元二次方程的解是其对应的二次函数的图像与x轴的交点坐标.因此一元二次方程中的b2-4ac,在二次函数中表示图像与x轴是否有交点.当b2-4ac>0时,图像与x轴有两个交点;当b2-4ac=0时,图像与x轴有一个交点;当b2-4ac<0时,图像与x轴没有交点.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网