题目内容

【题目】【发现证明】
如图1,点E,F分别在正方形ABCD的边BC,CD上,∠EAF=45°,试判断BE,EF,FD之间的数量关系.
小聪把△ABE绕点A逆时针旋转90°至△ADG,通过证明△AEF≌△AGF;从而发现并证明了EF=BE+FD.

(1)【类比引申】如图2,点E、F分别在正方形ABCD的边CB、CD的延长线上,∠EAF=45°,连接EF,请根据小聪的发现给你的启示写出EF、BE、DF之间的数量关系,并证明;

(2)【联想拓展】如图4,如图,∠BAC=90°,AB=AC,点E、F在边BC上,且∠EAF=45°,若BE=3,EF=5,求CF的长.

【答案】
(1)解: DF=EF+BE.

理由:如图(1)所示,

∵AB=AD,

∴把△ABE绕点A逆时针旋转90°至△ADG,可使AB与AD重合,

∵∠ADC=∠ABE=90°,

∴点C、D、G在一条直线上,

∴EB=DG,AE=AG,∠EAB=∠GAD,

∵∠BAG+∠GAD=90°,

∴∠EAG=∠BAD=90°,

∵∠EAF=45°,

∴∠FAG=∠EAG﹣∠EAF=90°﹣45°=45°,

∴∠EAF=∠GAF,

在△EAF和△GAF中,

∴△EAF≌△GAF,

∴EF=FG,

∵FD=FG+DG,

∴DF=EF+BE;


(2)解:∵∠BAC=90°,AB=AC,

∴将△ABE绕点A顺时针旋转90°得△ACG,连接FG,如图(2),

∴AG=AE,CG=BE,∠ACG=∠B,∠EAG=90°,

∴∠FCG=∠ACB+∠ACG=∠ACB+∠B=90°,

∴FG2=FC2+CG2=BE2+FC2

又∵∠EAF=45°,

而∠EAG=90°,

∴∠GAF=90°﹣45°,

在△AGF与△AEF中,

∴△AEF≌△AGF,

∴EF=FG,

∴CF2=EF2﹣BE2=52﹣32=16,

∴CF=4.


【解析】(1)类比题干的思路方法,仍是把△ABE绕点A逆时针旋转90°至△ADG,由旋转的性质可得△EAF≌△GAF,由FD=FG+DG,可得DF=EF+BE;(2)类比(1),仍是旋转法:将△ABE绕点A顺时针旋转90°得△ACG,仍可证△AEF≌△AGF,可得EF=FGCF2=EF2﹣BE2=52﹣32=16,得CF=4.
【考点精析】根据题目的已知条件,利用旋转的性质的相关知识可以得到问题的答案,需要掌握①旋转后对应的线段长短不变,旋转角度大小不变;②旋转后对应的点到旋转到旋转中心的距离不变;③旋转后物体或图形不变,只是位置变了.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网