题目内容

【题目】如图,四边形ABCD中,AD∥BC,∠ABC+∠DCB=90°,且BC=2AD,以AB、BC、DC为边向外作正方形,其面积分别为S1、S2、S3 , 若S1=3,S3=9,则S2的值为( )

A.12
B.18
C.24
D.48

【答案】D
【解析】∵S1=3,S3=9,

∴AB= ,CD=3,

过A作AE∥CD交BC于E,

则∠AEB=∠DCB,

∵AD∥BC,

∴四边形AECD是平行四边形,

∴CE=AD,AE=CD=3,

∵∠ABC+∠DCB=90°,

∴∠AEB+∠ABC=90°,

∴∠BAE=90°,

∴BE= =2

∵BC=2AD,

∴BC=2BE=4

∴S2=(4 2=48,

所以答案是:D.

【考点精析】掌握勾股定理的概念是解答本题的根本,需要知道直角三角形两直角边a、b的平方和等于斜边c的平方,即;a2+b2=c2

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网