题目内容
【题目】如图,四边形ABCD中,AD∥BC,∠ABC+∠DCB=90°,且BC=2AD,以AB、BC、DC为边向外作正方形,其面积分别为S1、S2、S3 , 若S1=3,S3=9,则S2的值为( )
A.12
B.18
C.24
D.48
【答案】D
【解析】∵S1=3,S3=9,
∴AB= ,CD=3,
过A作AE∥CD交BC于E,
则∠AEB=∠DCB,
∵AD∥BC,
∴四边形AECD是平行四边形,
∴CE=AD,AE=CD=3,
∵∠ABC+∠DCB=90°,
∴∠AEB+∠ABC=90°,
∴∠BAE=90°,
∴BE= =2 ,
∵BC=2AD,
∴BC=2BE=4 ,
∴S2=(4 )2=48,
所以答案是:D.
【考点精析】掌握勾股定理的概念是解答本题的根本,需要知道直角三角形两直角边a、b的平方和等于斜边c的平方,即;a2+b2=c2.
练习册系列答案
相关题目