题目内容
【题目】如图,△ABC是等边三角形,点D、E分别在边BC、AC上,AE=BD,连接DE,过点E作EF⊥DE,交线段BC的延长线于点F.
(1)求证:CE=CF;
(2)若BD=CE,AB=9,求线段DF的长.
【答案】(1)证明见解析;(2)12.
【解析】
(1)由题意可证△DEC是等边三角形,可求∠ECD=∠DEC=60°,根据三角形外角等于不相邻的两个内角的和,可求∠CEF=∠CFE=30°,即可得CE=CF;
(2)由题意可得BD=3,CD=6,即可求DF的长.
(1)∵△ABC是等边三角形
∴AB=AC=BC,∠BAC=∠ABC=∠ACB=60°
∵AE=BD
∴AC﹣AE=BC﹣BD
∴CE=CD,且∠ACB=60°
∴△CDE是等边三角形
∴∠ECD=∠DEC=60°
∵EF⊥DE
∴∠DEF=90°
∴∠CEF=30°
∵∠DCE=∠CEF+∠CFE=60°
∴∠CEF=∠CFE=30°
∴CE=CF
(2)∵BD=CE,CE=CD
∴BD=CD
∵AB=9
∴BC=9
∴BD=3,CD=6
∵CE=CF=CD
∴CF=6
∴DF=DC+CF=12
练习册系列答案
相关题目
【题目】小亮与小明做投骰子(质地均匀的正方体)的实验与游戏.
(1)在实验中他们共做了50次试验,试验结果如下:
朝上的点数 | 1 | 2 | 3 | 4 | 5 | 6 |
出现的次数 | 10 | 9 | 6 | 9 | 8 | 8 |
①填空:此次实验中,“1点朝上”的频率是 ;
(2)在游戏时两人约定:每次同时掷两枚骰子,如果两枚骰子的点数之和超过6,则小亮获胜,否则小明获胜.则小亮与小明谁获胜的可能性大?试说明理由.