题目内容
如图,EFGH是正方形ABCD的内接四边形,两条对角线EG和FH相交于点O,且它们所夹的锐角为θ,∠BEG与∠CFH都是锐角,已知EG=k,FH=l,四边形EFGH的面积为S,
(1)求证:sinθ=
;
(2)试用k、l、S来表示正方形ABCD的面积.
(1)求证:sinθ=
2S |
kl |
(2)试用k、l、S来表示正方形ABCD的面积.
(1)证明:S=S△EFG+S△EHG,
=S△EOF+S△GOF+S△EOH+S△GOH,
=
EO•0F•sinθ+
GO•0F•sin(180°-θ)
+
EO•OH•sin(180°-θ)+
GO•OH•sinθ
=
EG•OF•sinθ+
EG•OH•sinθ
=
EG•FH•sinθ=
kl•sinθ
所以sinθ=
;
(2)过E、F、G、H分别作AB、BC、CD、DA的垂线,得矩形PQRT.
设正方形ABCD的边长为a,PQ=b,QR=c,
则b=
,c=
,
由S△AEH=S△TEH,
S△BEF=S△PEF,S△GFC=S△QFG,S△DGH=S△RGH
得SABCD+SPQRT=2S,
∴a2+bc=2S,即a2+
•
=2S,
∴(k2+l2-4S)a2=k2l2-4S2,
由(1)知kl=
>2S,所以k2+l2≥2kl>4S,
故SABCD=a2=
.
=S△EOF+S△GOF+S△EOH+S△GOH,
=
1 |
2 |
1 |
2 |
+
1 |
2 |
1 |
2 |
=
1 |
2 |
1 |
2 |
=
1 |
2 |
1 |
2 |
所以sinθ=
2S |
kl |
(2)过E、F、G、H分别作AB、BC、CD、DA的垂线,得矩形PQRT.
设正方形ABCD的边长为a,PQ=b,QR=c,
则b=
k2-a2 |
l2-a2 |
由S△AEH=S△TEH,
S△BEF=S△PEF,S△GFC=S△QFG,S△DGH=S△RGH
得SABCD+SPQRT=2S,
∴a2+bc=2S,即a2+
k2-a2 |
l2-a2 |
∴(k2+l2-4S)a2=k2l2-4S2,
由(1)知kl=
2S |
sinθ |
故SABCD=a2=
k2l2-4S2 |
k2+l2-4S |
练习册系列答案
相关题目