题目内容

【题目】如图是抛物线y1=ax2+bx+c(a≠0)图象的一部分,抛物线的顶点坐标A(1,3),与x轴的一个交点B(4,0),直线y2=mx+n(m≠0)与抛物线交于A,B两点,下列结论:
①2a+b=0;
②abc>0;
③方程ax2+bx+c=3有两个相等的实数根;
④抛物线与x轴的另一个交点是(﹣1,0);
⑤当1<x<4时,有y2<y1
其中正确的是( )

A.①②③
B.①③④
C.①③⑤
D.②④⑤

【答案】C
【解析】∵抛物线的顶点坐标A(1,3),

∴抛物线的对称轴为直线x=﹣ =1,

∴2a+b=0,所以①正确;

∵抛物线开口向下,

∴a<0,

∴b=﹣2a>0,

∵抛物线与y轴的交点在x轴上方,

∴c>0,

∴abc<0,所以②错误;

∵抛物线的顶点坐标A(1,3),

∴x=1时,二次函数有最大值,

∴方程ax2+bx+c=3有两个相等的实数根,所以③正确;

∵抛物线与x轴的一个交点为(4,0)

而抛物线的对称轴为直线x=1,

∴抛物线与x轴的另一个交点为(﹣2,0),所以④错误;

∵抛物线y1=ax2+bx+c与直线y2=mx+n(m≠0)交于A(1,3),B点(4,0)

∴当1<x<4时,y2<y1,所以⑤正确.

所以答案是:C.

【考点精析】本题主要考查了二次函数图象以及系数a、b、c的关系和抛物线与坐标轴的交点的相关知识点,需要掌握二次函数y=ax2+bx+c中,a、b、c的含义:a表示开口方向:a>0时,抛物线开口向上; a<0时,抛物线开口向下b与对称轴有关:对称轴为x=-b/2a;c表示抛物线与y轴的交点坐标:(0,c);一元二次方程的解是其对应的二次函数的图像与x轴的交点坐标.因此一元二次方程中的b2-4ac,在二次函数中表示图像与x轴是否有交点.当b2-4ac>0时,图像与x轴有两个交点;当b2-4ac=0时,图像与x轴有一个交点;当b2-4ac<0时,图像与x轴没有交点.才能正确解答此题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网