题目内容

【题目】已知点E在△ABC内,∠ABC=∠EBD=α,∠ACB=∠EDB=60°,∠AEB=150°,∠BEC=90°.
(1)当α=60°时(如图1), ①判断△ABC的形状,并说明理由;
②求证:BD= AE;
(2)当α=90°时(如图2),求 的值.

【答案】
(1)解:①判断:△ABC是等边三角形.

理由:∵∠ABC=∠ACB=60°

∴∠BAC=180°﹣∠ABC﹣∠ACB=60°=∠ABC=∠ACB

∴△ABC是等边三角形

②证明:同理△EBD也是等边三角形

连接DC,

则AB=BC,BE=BD,∠ABE=60°﹣∠EBC=∠CBD

∴△ABE≌△CBD

∴AE=CD,∠AEB=∠CDB=150°

∴∠EDC=150°﹣∠BDE=90°∠CED=∠BEC﹣∠BED=90°﹣60°=30°

在Rt△EDC中


(2)解:连接DC,

∵∠ABC=∠EBD=90°,∠ACB=∠EDB=60°

∴△ABC∽△EBD

又∵∠ABE=90°﹣∠EBC=∠CBD

∴△ABE∽△CBD,∠AEB=∠CDB=150°,

∴∠EDC=150°﹣∠BDE=90°∠CED=∠BEC﹣∠BED=90°﹣(90°﹣∠BDE)=60°

设BD=x在Rt△EBD中DE=2x,BE=

在Rt△EDC中CD=

,即


【解析】①由三角形ABC中有两个60°而求得它为等边三角形;②由△EBD也是等边三角形,连接DC,证得△ABE≌△CBD,在直角三角形中很容易证得结论.(2)连接DC,证得△ABC∽△EBD,设BD=x在Rt△EBD中DE=2x由相似比即得到比值.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网