题目内容

【题目】已知二次函数y=ax2+bx+c(a≠0)的图象如图,有下列5个结论:
①abc<0;②3a+c>0;③4a+2b+c>0;④2a+b=0;⑤b2>4ac
其中正确的结论的有(

A.1个
B.2个
C.3个
D.4个

【答案】D
【解析】解:开口向下,则a<0,
与y轴交于正半轴,则c>0,
∵﹣ >0,
∴b>0,
则abc<0,①正确;
∵﹣ =1,
则b=﹣2a,
∵a﹣b+c<0,
∴3a+c<0,②错误;
∵b=﹣2a,
∴2a+b=0,④正确;
∴b2﹣4ac>0,
∴b2>4ac,⑤正确,
故选:D.
【考点精析】通过灵活运用二次函数图象以及系数a、b、c的关系,掌握二次函数y=ax2+bx+c中,a、b、c的含义:a表示开口方向:a>0时,抛物线开口向上; a<0时,抛物线开口向下b与对称轴有关:对称轴为x=-b/2a;c表示抛物线与y轴的交点坐标:(0,c)即可以解答此题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网