题目内容

【题目】如图,正方形ABCD中,AB= ,点E、F分别在BC、CD上,且∠BAE=30°,∠DAF=15度.

(1)求证:DF+BE=EF;
(2)求∠EFC的度数;
(3)求△AEF的面积.

【答案】
(1)证明:延长EB至G,使BG=DF,连接AG,
∵正方形ABCD,
∴AB=AD,∠ABG=∠ADF=∠BAD=90°,
∵BG=DF,
∴△ABG≌△ADF,
∴AG=AF,
∵∠BAE=30°,∠DAF=15°,
∴∠FAE=∠GAE=45°,
∵AE=AE,
∴△FAE≌△GAE,
∴EF=EG=GB+BE=DF+BE

(2)解:∵△AGE≌△AFE,
∴∠AFE=∠AGE=75°,
∵∠DFA=90°-∠DAF=75°,
∴∠EFC=180°-∠DFA-∠AFE=180°-75°-75°=30°,
∴∠EFC=30°
(3)解:∵AB=BC= ,∠BAE=30°,
∴BE=1,CE= -1,
∵∠EFC=30°,
∴CF=3-
∴S△CEF= CECF=2 -3,
由(1)知,△ABG≌△ADF,△FAE≌△GAE,
∴S△AEF=S正方形ABCD-S△ADF-S△AEB-S△CEF=S正方形ABCD-S△AEF-S△CEF
S△AEF (S正方形ABCD-S△AEF-S△CEF)=3-
【解析】(1)根据已知条件可证△ABG≌△ADF,可得AG=AF,然后可证△FAE≌△GAE,则结论可得;(2)由(1)知,△FAE≌△GAE,结合已知条件可得解;(3)根据AEF的面积=正方形ABCD的面积-ADF的面积-AEB的面积-CEF的面积=正方形ABCD的面积-AEF的面积-CEF的面积即可求解。

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网