题目内容
【题目】如图,正方形ABCD中,AB= ,点E、F分别在BC、CD上,且∠BAE=30°,∠DAF=15度.
(1)求证:DF+BE=EF;
(2)求∠EFC的度数;
(3)求△AEF的面积.
【答案】
(1)证明:延长EB至G,使BG=DF,连接AG,
∵正方形ABCD,
∴AB=AD,∠ABG=∠ADF=∠BAD=90°,
∵BG=DF,
∴△ABG≌△ADF,
∴AG=AF,
∵∠BAE=30°,∠DAF=15°,
∴∠FAE=∠GAE=45°,
∵AE=AE,
∴△FAE≌△GAE,
∴EF=EG=GB+BE=DF+BE
(2)解:∵△AGE≌△AFE,
∴∠AFE=∠AGE=75°,
∵∠DFA=90°-∠DAF=75°,
∴∠EFC=180°-∠DFA-∠AFE=180°-75°-75°=30°,
∴∠EFC=30°
(3)解:∵AB=BC= ,∠BAE=30°,
∴BE=1,CE= -1,
∵∠EFC=30°,
∴CF=3- ,
∴S△CEF= CECF=2 -3,
由(1)知,△ABG≌△ADF,△FAE≌△GAE,
∴S△AEF=S正方形ABCD-S△ADF-S△AEB-S△CEF=S正方形ABCD-S△AEF-S△CEF ,
S△AEF= (S正方形ABCD-S△AEF-S△CEF)=3-
【解析】(1)根据已知条件可证△ABG≌△ADF,可得AG=AF,然后可证△FAE≌△GAE,则结论可得;(2)由(1)知,△FAE≌△GAE,结合已知条件可得解;(3)根据AEF的面积=正方形ABCD的面积-ADF的面积-AEB的面积-CEF的面积=正方形ABCD的面积-AEF的面积-CEF的面积即可求解。
【题目】某青年旅社有60间客房供游客居住,在旅游旺季,当客房的定价为每天200元时,所有客房都可以住满.客房定价每提高10元,就会有1个客房空闲,对有游客入住的客房,旅社还需要对每个房间支出20元/每天的维护费用,设每间客房的定价提高了x元.
(1)填表(不需化简)
入住的房间数量 | 房间价格 | 总维护费用 | |
提价前 | 60 | 200 | 60×20 |
提价后 |
|
|
|
(2)若该青年旅社希望每天纯收入为14000元且能吸引更多的游客,则每间客房的定价应为多少元?(纯收入=总收入﹣维护费用)