ÌâÄ¿ÄÚÈÝ
Èçͼ£¬ÒÑÖªÅ×ÎïÏßy=-
x2+bx+cÓë×ø±êÖá½»ÓÚA£¬B£¬CÈýµã£¬µãAµÄºá×ø±êΪ-1£¬¹ýµãC£¨0£¬3£©µÄÖ±Ïßy=-
x+3ÓëxÖá½»ÓÚµãQ£¬µãPÊÇÏ߶ÎBCÉϵÄÒ»¸ö¶¯µã£¬PH¡ÍOBÓÚµãH£®ÈôPB=5t£¬ÇÒ0£¼t£¼1£®
£¨1£©È·¶¨b£¬cµÄÖµ£»
£¨2£©Ð´³öµãB£¬Q£¬PµÄ×ø±ê£¨ÆäÖÐQ£¬PÓú¬tµÄʽ×Ó±íʾ£©£»
£¨3£©ÒÀµãPµÄ±ä»¯£¬ÊÇ·ñ´æÔÚtµÄÖµ£¬Ê¹¡÷PQBΪµÈÑüÈý½ÇÐΣ¿Èô´æÔÚ£¬Çó³öËùÓÐtµÄÖµ£»Èô²»´æÔÚ£¬ËµÃ÷ÀíÓÉ£®
3 |
4 |
3 |
4t |
£¨1£©È·¶¨b£¬cµÄÖµ£»
£¨2£©Ð´³öµãB£¬Q£¬PµÄ×ø±ê£¨ÆäÖÐQ£¬PÓú¬tµÄʽ×Ó±íʾ£©£»
£¨3£©ÒÀµãPµÄ±ä»¯£¬ÊÇ·ñ´æÔÚtµÄÖµ£¬Ê¹¡÷PQBΪµÈÑüÈý½ÇÐΣ¿Èô´æÔÚ£¬Çó³öËùÓÐtµÄÖµ£»Èô²»´æÔÚ£¬ËµÃ÷ÀíÓÉ£®
£¨1£©ÒÑÖªÅ×ÎïÏß¹ýA£¨-1£¬0£©¡¢C£¨0£¬3£©£¬ÔòÓУº
£¬
½âµÃ
£¬
Òò´Ëb=
£¬c=3£»
£¨2£©ÁîÅ×ÎïÏߵĽâÎöʽÖÐy=0£¬ÔòÓÐ-
x2+
x+3=0£¬
½âµÃx=-1£¬x=4£»
¡àB£¨4£¬0£©£¬OB=4£¬
Òò´ËBC=5£¬
ÔÚÖ±½ÇÈý½ÇÐÎOBCÖУ¬OB=4£¬OC=3£¬BC=5£¬
¡àsin¡ÏCBO=
£¬cos¡ÏCBO=
£¬
ÔÚÖ±½ÇÈý½ÇÐÎBHPÖУ¬BP=5t£¬
Òò´ËPH=3t£¬BH=4t£»
¡àOH=OB-BH=4-4t£¬
Òò´ËP£¨4-4t£¬3t£©£®
ÁîÖ±ÏߵĽâÎöʽÖÐy=0£¬ÔòÓÐ0=-
x+3£¬x=4t£¬
¡àQ£¨4t£¬0£©£®
£¨3£©´æÔÚtµÄÖµ£¬ÓÐÒÔÏÂÈýÖÖÇé¿ö
¢ÙÈçͼ1£¬µ±PQ=PBʱ£¬
¡ßPH¡ÍOB£¬ÔòQH=HB£¬
¡à4-4t-4t=4t£¬
¡àt=
£¬
¢Úµ±PB=QBµÃ4-4t=5t£¬
¡àt=
£¬
¢Ûµ±PQ=QBʱ£¬ÔÚRt¡÷PHQÖÐÓÐQH2+PH2=PQ2£¬
¡à£¨8t-4£©2+£¨3t£©2=£¨4-4t£©2£¬
¡à57t2-32t=0£¬
¡àt=
£¬t=0£¨ÉáÈ¥£©£¬
ÓÖ¡ß0£¼t£¼1£¬
¡àµ±t=
»ò
»ò
ʱ£¬¡÷PQBΪµÈÑüÈý½ÇÐΣ®
|
½âµÃ
|
Òò´Ëb=
9 |
4 |
£¨2£©ÁîÅ×ÎïÏߵĽâÎöʽÖÐy=0£¬ÔòÓÐ-
3 |
4 |
9 |
4 |
½âµÃx=-1£¬x=4£»
¡àB£¨4£¬0£©£¬OB=4£¬
Òò´ËBC=5£¬
ÔÚÖ±½ÇÈý½ÇÐÎOBCÖУ¬OB=4£¬OC=3£¬BC=5£¬
¡àsin¡ÏCBO=
3 |
5 |
4 |
5 |
ÔÚÖ±½ÇÈý½ÇÐÎBHPÖУ¬BP=5t£¬
Òò´ËPH=3t£¬BH=4t£»
¡àOH=OB-BH=4-4t£¬
Òò´ËP£¨4-4t£¬3t£©£®
ÁîÖ±ÏߵĽâÎöʽÖÐy=0£¬ÔòÓÐ0=-
3 |
4t |
¡àQ£¨4t£¬0£©£®
£¨3£©´æÔÚtµÄÖµ£¬ÓÐÒÔÏÂÈýÖÖÇé¿ö
¢ÙÈçͼ1£¬µ±PQ=PBʱ£¬
¡ßPH¡ÍOB£¬ÔòQH=HB£¬
¡à4-4t-4t=4t£¬
¡àt=
1 |
3 |
¢Úµ±PB=QBµÃ4-4t=5t£¬
¡àt=
4 |
9 |
¢Ûµ±PQ=QBʱ£¬ÔÚRt¡÷PHQÖÐÓÐQH2+PH2=PQ2£¬
¡à£¨8t-4£©2+£¨3t£©2=£¨4-4t£©2£¬
¡à57t2-32t=0£¬
¡àt=
32 |
57 |
ÓÖ¡ß0£¼t£¼1£¬
¡àµ±t=
1 |
3 |
4 |
9 |
32 |
57 |
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿