题目内容
【题目】如图,点P是∠AOB内部的一点,∠AOB=30°,OP=8cm,M,N是OA,OB上的两个动点,则△MPN周长的最小值_____cm.
【答案】8
【解析】
设点P关于OA的对称点为C,关于OB的对称点为D,当点M、N在CD上时,△PMN的周长最小.
分别作点P关于OA、OB的对称点C、D,连接CD,分别交OA、OB于点M、N,连接OP、OC、OD、PM、PN.
∵点P关于OA的对称点为C,关于OB的对称点为D,
∴PM=CM,OP=OC,∠COA=∠POA;
∵点P关于OB的对称点为D,
∴PN=DN,OP=OD,∠DOB=∠POB,
∴OC=OD=OP=8cm,∠COD=∠COA+∠POA+∠POB+∠DOB=2∠POA+2∠POB=2∠AOB=60°,
∴△COD是等边三角形,
∴CD=OC=OD=8cm.
∴△PMN的周长的最小值=PM+MN+PN=CM+MN+DN=CD=8cm.
故答案为:8.
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目