题目内容
【题目】在平面直角坐标系中,已知抛物线y=x2+kx+c的图象经过点C(0,1),当x=2时,函数有最小值.
(1)求抛物线的解析式;
(2)直线l⊥y轴,垂足坐标为(0,﹣1),抛物线的对称轴与直线l交于点A.在x轴上有一点B,且AB=,试在直线l上求异于点A的一点Q,使点Q在△ABC的外接圆上;
(3)点P(a,b)为抛物线上一动点,点M为坐标系中一定点,若点P到直线l的距离始终等于线段PM的长,求定点M的坐标.
【答案】(1)y=x2﹣x+1; (2)Q(1,﹣1);(3)M(2,1)
【解析】
(1)由已知可求抛物线解析式为y=x2﹣x+1;
(2)由题意可知A(2,﹣1),设B(t,0),由AB=,所以(t﹣2)2+1=2,求出B(1,0)或B(3,0),当B(1,0)时,A、B、C三点共线,舍去,所以B(3,0),可证明△ABC为直角三角形,BC为外接圆的直径,外接圆的圆心为BC的中点(,),半径为,设Q(x,﹣1),则有(x﹣)2+(+1)2=()2,即可求Q(1,﹣1);
(3)设顶点M(m,n),P(a,b)为抛物线上一动点,则有b=a2﹣a+1,因为P到直线l的距离等于PM,所以(m﹣a)2+(n﹣b)2=(b+1)2,可得+(2n﹣2m+2)a+(m2+n2﹣2n﹣3)=0,由a为任意值上述等式均成立,有,可求定点M的坐标.
解:(1)∵图象经过点C(0,1),
∴c=1,
∵当x=2时,函数有最小值,即对称轴为直线x=2,
∴,解得:k=﹣1,
∴抛物线解析式为y=x2﹣x+1;
(2)由题意可知A(2,﹣1),设B(t,0),
∵AB=,
∴(t﹣2)2+1=2,
∴t=1或t=3,
∴B(1,0)或B(3,0),
∵B(1,0)时,A、B、C三点共线,舍去,
∴B(3,0),
∴AC=2,BC=,
∴∠BAC=90°,
∴△ABC为直角三角形,BC为外接圆的直径,外接圆的圆心为BC的中点(,),半径为,
设Q(x,﹣1),则有(x﹣)2+(+1)2=()2,
∴x=1或x=2(舍去),
∴Q(1,﹣1);
(3)设顶点M(m,n),∵P(a,b)为抛物线上一动点,
∴b=a2﹣a+1,
∵P到直线l的距离等于PM,
∴(m﹣a)2+(n﹣b)2=(b+1)2,
∴+(2n﹣2m+2)a+(m2+n2﹣2n﹣3)=0,
∵a为任意值上述等式均成立,
∴,
∴,
此时m2+n2﹣2n﹣3=0,
∴定点M(2,1).