题目内容

【题目】如图1,点O是正方形ABCD两对角线的交点,分别延长OD到点G,OC到点E,使OG=2OD,OE=2OC,然后以OG、OE为邻边作正方形OEFG,连接AG,DE.

(1)求证:DE⊥AG;
(2)正方形ABCD固定,将正方形OEFG绕点O逆时针旋转α角(0°<α<360°)得到正方形OE′F′G′,如图2.

①在旋转过程中,当∠OAG′是直角时,求α的度数;
②若正方形ABCD的边长为1,在旋转过程中,求AF′长的最大值和此时α的度数,直接写出结果不必说明理由.

【答案】
(1)

解:如图1,延长ED交AG于点H,

∵点O是正方形ABCD两对角线的交点,

∴OA=OD,OA⊥OD,

∵OG=OE,

在△AOG和△DOE中,

∴△AOG≌△DOE,

∴∠AGO=∠DEO,

∵∠AGO+∠GAO=90°,

∴∠GAO+∠DEO=90°,

∴∠AHE=90°,

即DE⊥AG;


(2)

解:①在旋转过程中,∠OAG′成为直角有两种情况:

(Ⅰ)α由0°增大到90°过程中,当∠OAG′=90°时,

∵OA=OD= OG= OG′,

∴在Rt△OAG′中,sin∠AG′O= =

∴∠AG′O=30°,

∵OA⊥OD,OA⊥AG′,

∴OD∥AG′,

∴∠DOG′=∠AG′O=30°,

即α=30°;

(Ⅱ)α由90°增大到180°过程中,当∠OAG′=90°时,

同理可求∠BOG′=30°,

∴α=180°﹣30°=150°.

综上所述,当∠OAG′=90°时,α=30°或150°.

②如图3,当旋转到A、O、F′在一条直线上时,AF′的长最大,

∵正方形ABCD的边长为1,

∴OA=OD=OC=OB=

∵OG=2OD,

∴OG′=OG=

∴OF′=2,

∴AF′=AO+OF′= +2,

∵∠COE′=45°,

∴此时α=315°.


【解析】(1)延长ED交AG于点H,易证△AOG≌△DOE,得到∠AGO=∠DEO,然后运用等量代换证明∠AHE=90°即可;(2)①在旋转过程中,∠OAG′成为直角有两种情况:α由0°增大到90°过程中,当∠OAG′=90°时,α=30°,α由90°增大到180°过程中,当∠OAG′=90°时,α=150°;②当旋转到A、O、F′在一条直线上时,AF′的长最大,AF′=AO+OF′= +2,此时α=315°.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网