题目内容
【题目】如图,将△ABC沿角平分线BD所在直线翻折,顶点A恰好落在边BC的中点E处,AE=BD,那么tan∠ABD=( )
A. B. C. D.
【答案】B
【解析】
作CM⊥AE交AE的延长线于M,作DN⊥AB于N,DF⊥BC于F,AE与BD交于点K,设DK=a,先证明AD:CD=1:2,再证明△BKE≌△CME,得BK=CM=3a,根据tan∠ABD=即可解决问题.
如图,作CM⊥AE交AE的延长线于M,作DN⊥AB于N,DF⊥BC于F,AE与BD交于点K,设DK=a.
∵AB=BE=EC,∴BC=2AB.
∵DB平分∠ABC,∴DN=DF.
∵,∴.
∵AB=FB,∠ABD=∠EBD,∴DB⊥AM,AK=KE.
∵DB⊥AM,CM⊥AM,∴DK∥CM,∴,∠KBE=∠MCE,∴CM=3a.在△BKE和△CME中,,∴△BKE≌△CME,∴BK=CM=3a,∴BD=AE=4a,∴AK=KE=2a,∴tan∠ABD=.
故选B.
练习册系列答案
相关题目
【题目】一般成年人的脚长(厘米)与鞋码(码)有如下关系:
脚长(厘米) | 23 | 23.5 | 24 | 24.5 | … |
鞋码(码) | 36 | 37 | 38 | 39 | … |
(1)若某人的脚长为26厘米,他应穿多少码的鞋?
(2)请建立鞋码(厘米)与脚长(码)之间的函数表达式;
(3)我国著名篮球运动员姚明穿53码的鞋,请你根据以上关系计算他的脚长.
【题目】抛物线y=ax2+bx+c上部分点的横坐标x,纵坐标y,的对应值如下表:
x | … | -2 | -1 | 0 | 1 | 2 | … |
y | … | 0 | -4 | -4 | 0 | 8 | … |
(1)根据上表填空:
①抛物线与x轴的交点坐标是_________和_________;
②抛物线经过点(-3,_________);
(2)试确定抛物线y=ax2+bx+c的解析式.