题目内容
【题目】在矩形ABCD中,AD=3,CD=4,点E在CD上,且DE=1.
(1)感知:如图①,连接AE,过点E作EF丄AE,交BC于点F,连接AE,易证:△ADE≌△ECF(不需要证明);
(2)探究:如图②,点P在矩形ABCD的边AD上(点P不与点A、D重合),连接PE,过点E作EF⊥PE,交BC于点F,连接PF.求证:△PDE和△ECF相似;
(3)应用:如图③,若EF交AB于点F,EF丄PE,其他条件不变,且△PEF的面积是6,则AP的长为_____.
【答案】3﹣
【解析】试题分析:感知:先利用矩形性质得:∠D=∠C=90°,再利用同角的余角相等得:∠DAE=∠FEC,根据已知边的长度计算出AD=CE=3,则由ASA证得:△ADE≌△ECF;
探究:利用两角相等证明△PDE∽△ECF;
应用:作辅助线,构建如图②一样的相似三角形,利用探究得:△PDE∽△EGF,则 =,所以 =,再利用△PEF的面积是6,列式可得:PEEF=12,两式结合可求得PE的长,利用勾股定理求PD,从而得出AP的长.
试题解析:证明:感知:如图①.∵四边形ABCD为矩形,∴∠D=∠C=90°,∴∠DAE+∠DEA=90°.∵EF⊥AE,∴∠AEF=90°,∴∠DEA+∠FEC=90°,∴∠DAE=∠FEC.∵DE=1,CD=4,∴CE=3.∵AD=3,∴AD=CE,∴△ADE≌△ECF(ASA);
探究:如图②.∵四边形ABCD为矩形,∴∠D=∠C=90°,∴∠DPE+∠DEP=90°.∵EF⊥PE,∴∠PEF=90°,∴∠DEP+∠FEC=90°,∴∠DPE=∠FEC,∴△PDE∽△ECF;
应用:如图③,过F作FG⊥DC于G.∵四边形ABCD为矩形,∴AB∥CD,∴FG=BC=3.∵PE⊥EF,∴S△PEF=PEEF=6,∴PEEF=12,同理得:△PDE∽△EGF,∴=,∴=,∴EF=3PE,∴3PE2=12,∴PE=±2.∵PE>0,∴PE=2.在Rt△PDE中,由勾股定理得:PD==,∴AP=AD﹣PD=3﹣.故答案为:3﹣.