题目内容
【题目】甲、乙两车从A地出发,沿同一路线驶向B地.甲车先出发匀速驶向B地,40min后,乙车出发,匀速行驶一段时间后,在途中的货站装货耗时半小时.由于满载货物,为了行驶安全,速度减少了50km/h,结果与甲车同时到达B地.甲乙两车距A地的路程y(km)与乙车行驶时间x(h)之间的函数图象如图所示,则下列说法中正确的有( )
①;②甲的速度是60km/h;③乙出发80min追上甲;④乙刚到达货站时,甲距B地180km.
A.4个B.3个C.2个D.1个
【答案】A
【解析】
由线段DE所代表的意思,结合装货半小时,可得出a的值,从而判断出①成立;结合路程=速度×时间,能得出甲车的速度,从而判断出②成立;设出乙车刚出发时的速度为x千米/时,则装满货后的速度为(x-50)千米/时,由路程=速度×时间列出关于x的一元一次方程,解出方程即可得知乙车的初始速度,由甲车先跑的路程÷两车速度差即可得出乙车追上甲车的时间,从而得出③成立;由乙车刚到达货站的时间,可以得出甲车行驶的总路程,结合A、B两地的距离即可判断④也成立.综上可知①②③④皆成立.
∵线段DE代表乙车在途中的货站装货耗时半小时,
∴a=4+0.5=4.5(小时),即①成立;
40分钟=小时,
甲车的速度为460÷(7+)=60(千米/时),
即②成立;
设乙车刚出发时的速度为x千米/时,则装满货后的速度为(x50)千米/时,
根据题意可知:4x+(74.5)( x50)=460,
解得:x=90.
乙车发车时,甲车行驶的路程为60×23=40(千米),
乙车追上甲车的时间为40÷(9060)=(小时), 小时=80分钟,即③成立;
乙车刚到达货站时,甲车行驶的时间为(4+)小时,
此时甲车离B地的距离为46060×(4+)=180(千米),
即④成立.
综上可知正确的有:①②③④.
故选:A.