题目内容

如图所示,⊙O1和⊙O2外切于点C,AB是⊙O1和⊙O2的外公切线,A、B为切点,且∠ACB=90°.以AB所在直线为轴,过点C且垂直于AB的直线为轴建立直角坐标系,已知AO=4,OB=1.
(1)分别求出A、B、C各点的坐标;
(2)求经过A、B、C三点的抛物线y=ax2+bx+c的解析式;
(3)如果⊙O1的半径是5,问这条抛物线的顶点是否落在两圆连心线O1O2上?如果在,请证明;如果不在,请说明理由.
(1)∵AO=4,OB=1,
∴A、B两点的坐标分别为:(-4,0),(1,0),
∵∠ACB=90°,
设C点坐标为(0,y),则AB2=AC2+BC2
即(|-4-1|)2=(-4)2+y2+12+y2
即25=17+2y2,解得y=2(舍去)或y=-2.
故C点坐标为(0,-2),

(2)设经过A、B、C三点的抛物线的函数解析式为y=ax2+bx+c,
16a-4b+c=0
a+b+c=0
c=-2

解得
a=
1
2
b=
3
2
c=-2

故所求二次函数的解析式为y=
1
2
x2+
3
2
x-2.

(3)过C作两圆的公切线CD交AB于D,则AD=BD=CD,由A(-4,0),B(1,0)可知D(-
3
2
,0),
设过CD两点的直线为y=kx+b,则
-
3
2
k+b=0
b=-2

解得
k=-
4
3
b=-2

故此一次函数的解析式为y=-
4
3
x-2,
∵过O1,O2的直线必过C点且与直线y=-
4
3
x-2垂直,
故过O1,O2的直线的解析式为y=
3
4
x-2.
由(2)中所求抛物线的解析式可知抛物线的顶点坐标为(-
3
2
,-
25
8
),
代入直线解析式得
3
4
×(-
3
2
)-2=-
25
8
,故这条抛物线的顶点落在两圆的连心O1O2上.
练习册系列答案
相关题目
今年我国多个省市遭受严重干旱,受旱灾的影响,4月份,我市某蔬菜价格呈上升趋势,其前四周每周的平均销售价格变化如下表:
周数x1234
价格y(元/kg)22.22.42.6
进入5月,由于本地蔬菜的上市,此种蔬菜的平均销售价格y(元/千克)从5月第1周的2.8元/千克下降至第2周的2.4元/千克,且y与周数x的变化情况满足二次函数y=-
1
20
x2+bx+c.
(1)请观察题中的表格,用所学过的一次函数、反比例函数或二次函数的有关知识直接写出4月份y与x的函数关系式,并求出5月份y与x的函数关系式;
(2)若4月份此种蔬菜的进价m(元/千克)与周数x所满足的函数关系为m=
1
4
x+1.2,5月份此种蔬菜的进价m(元/千克)与周数x所满足的函数关系为m=-
1
5
x+2.试问4月份与5月份分别在哪一周销售此种蔬菜一千克的利润最大?且最大利润分别是多少?
(3)若5月份的第2周共销售100吨此种蔬菜.从5月份的第3周起,由于受暴雨的影响,此种蔬菜的可供销量将在第2周销量的基础上每周减少a%,政府为稳定蔬菜价格,从外地调运2吨此种蔬菜,刚好满足本地市民的需要,且使此种蔬菜的销售价格比第2周仅上涨0.8a%.若在这一举措下,此种蔬菜在第3周的总销售额与第2周刚好持平,请你参考以下数据,通过计算估算出a的整数值.
(参考数据:372=1369,382=1444,392=1521,402=1600,412=1681)

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网