题目内容
【题目】已知等边△ABC中,点D,E分别在边AB,BC上,把△BDE沿直线DE翻折,使点B落在点Bˊ处,DBˊ,EBˊ分别交边AC于点F,G,若∠ADF=80°,则∠EGC的度数为
【答案】80°
【解析】解:由翻折可得∠B′=∠B=60°,
∴∠A=∠B′=60°,
∵∠AFD=∠GFB′,
∴△ADF∽△B′GF,
∴∠ADF=∠B′GF,
∵∠EGC=∠FGB′,
∴∠EGC=∠ADF=80°.
所以答案是:80°.
【考点精析】解答此题的关键在于理解等边三角形的性质的相关知识,掌握等边三角形的三个角都相等并且每个角都是60°,以及对翻折变换(折叠问题)的理解,了解折叠是一种对称变换,它属于轴对称,对称轴是对应点的连线的垂直平分线,折叠前后图形的形状和大小不变,位置变化,对应边和角相等.
练习册系列答案
相关题目