题目内容
15、如图,在平行四边形ABCD中,∠ABC的角平分线BE交AD于E点,AB=5,ED=3,则平行四边形ABCD的周长为
26
.分析:根据平行四边形的性质和角平分线的性质,得出边的关系求解.
解答:解:∵四边形ABCD是平行四边形,
∴AD∥BC,∠EBC=∠AEB,
∵BE是∠ABC的角平分线,
∴∠EBC=∠AEB=∠ABE,AB=AE,
平行四边形ABCD的周长=2AB+2(AE+ED)=2AB+2(AE+ED)=2×5+2×(5+3)=26.
故答案为26.
∴AD∥BC,∠EBC=∠AEB,
∵BE是∠ABC的角平分线,
∴∠EBC=∠AEB=∠ABE,AB=AE,
平行四边形ABCD的周长=2AB+2(AE+ED)=2AB+2(AE+ED)=2×5+2×(5+3)=26.
故答案为26.
点评:本题主要考查了平行四边形的性质,在平行四边形中,当出现角平分线时,一般可构造等腰三角形,进而利用等腰三角形的性质解题.
练习册系列答案
相关题目
如图,在平行四边形ABCD中,AB=2
,AO=
,OB=
,则下列结论中不正确的是( )
2 |
3 |
5 |
A、AC⊥BD |
B、四边形ABCD是菱形 |
C、△ABO≌△CBO |
D、AC=BD |