题目内容
【题目】如图,等边三角形ABC的边长为2,以BC边上的高AB1为边作等边三角形AB1C1,△ABC与△AB1C1公共部分的面积记为S1,再以等边三角形AB1C1边B1C1上的高AB2为边作等边三角形AB2C2,△AB1C1与△AB2C2公共部分的面积记为S2……以此类推,那么S3_____.(用含n的式子表示)
【答案】
【解析】
由AB1为边长为2的等边三角形ABC的高,利用三线合一得到B1为BC的中点,求出BB1的长,利用勾股定理求出AB1的长,进而求出S1,同理求出S2,依此类推,得到Sn.
解:∵等边三角形ABC的边长为2,AB1⊥BC,
∴BB1=1,AB=2,
根据勾股定理得:AB1=
∴S1=× ×=
∵等边三角形AB1C1的边长为,AB2⊥B1C1,
∴B1B2=,AB1=,
根据勾股定理得:AB2= ,
∴S2==,
依此类推,Sn=,
故答案为.
练习册系列答案
相关题目