题目内容

【题目】如图,在△ABC中,∠C=90°,∠ABC的平分线交AC于点E,过点E作BE的垂线交AB于点F,⊙O是△BEF的外接圆.

(1)求证:AC是⊙O的切线.

(2)过点E作EH⊥AB于点H,求证:CD=HF.

【答案】1证明见解析;(2)证明见解析.

【解析】

试题分析:(1)连接OE,由于BE是角平分线,则有CBE=OBE;而OB=OE,就有OBE=OEB,等量代换有OEB=CBE,那么利用内错角相等,两直线平行,可得OEBC;又C=90°,所以AEO=90°,即AC是O的切线;

(2)连结DE,先根据AAS证明CDE≌△HFE,再由全等三角形的对应边相等即可得出CD=HF.

试题解析:(1)如图1,连接OE.

∵BE⊥EF,

∴∠BEF=90°,

∴BF是圆O的直径.

∵BE平分∠ABC,

∴∠CBE=∠OBE,

∵OB=OE,

∴∠OBE=∠OEB,

∴∠OEB=∠CBE,

∴OE∥BC,

∴∠AEO=∠C=90°,

∴AC是⊙O的切线;

(2)如图2,连结DE.

∵∠CBE=∠OBE,EC⊥BC于C,EH⊥AB于H,

∴EC=EH.

∵∠CDE+∠BDE=180°,∠HFE+∠BDE=180°,

∴∠CDE=∠HFE.

在△CDE与△HFE中,

∴△CDE≌△HFE(AAS),

∴CD=HF.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网