题目内容
【题目】某中学八年级学生在学习等腰三角形的相关知识时时,经历了以下学习过程:
(1)(探究发现)如图1,在中,若平分,时,可以得出,为中点,请用所学知识证明此结论.
(2)(学以致用)如果和等腰有一个公共的顶点,如图2,若顶点与顶点也重合,且,试探究线段和的数量关系,并证明.
(3)(拓展应用)如图3,在(2)的前提下,若顶点与顶点不重合,,(2)中的结论还成立吗?证明你的结论
【答案】(1)详见详解;(2)DF=2BE,证明详见详解;(3)DF=2BE,证明详见详解
【解析】
(1)只要证明△ADB≌△ADC(ASA)即可;
(2)如图2中,延长BE交CA的延长线于K,只要证明△BAK≌△CAD(ASA)即可;
(3)作FK∥CA交BE的延长线于K,交AB于J,利用(2)中的结论证明即可.
解:(1)如图1中,∵AD⊥BC,∴∠ADB=∠ADC=90°,
∵DA平分∠BAC,∴∠DAB=∠DAC,
∵AD=AD,∴△ADB≌△ADC(ASA),
∴AB=AC,BD=DC.
(2)结论:DF=2BE.
理由:如图2中,延长BE交CA的延长线于K.
∵CE平分∠BCK,CE⊥BK,
∴由(1)中结论可知:CB=CK,BE=KE,
∵∠BAK=∠CAD=∠CEK=90°,
∴∠ABK+∠K=90°,∠ACE+∠K=90°,
∴∠ABK=∠ACD,∵AB=AC,
∴△BAK≌△CAD(ASA),CD=BK,
∴CD=2BE,
即DF=2BE.
(3)如图3中,结论不变:DF=2BE.
理由:作FK∥CA交BE的延长线于K,交AB于J.
∵FK∥AC,∴∠FJB=∠A=90°,∠BFK=∠BCA,
由(2)可知Rt△ABC为等腰三角形
∵∠JBF=45°,
∴△BJF是等腰直角三角形,
∵∠BFE=∠ACB,∴∠BFE=∠BFJ,
由(2)可知:DF=2BE.