题目内容
【题目】在△ABC中,点D为边BC上一点,请回答下列问题:
(1)如图1,若∠DAC=∠B,△ABC的角平分线CE交AD于点F,试说明∠AEF=∠AFE;
(2)在(1)的条件下,如图2,△ABC的外角∠ACQ的角平分线CP交BA的延长线于点P,若∠P=26°,猜想∠CFD的度数,并说明理由.
【答案】(1)证明见解析;(2)∠CFD=64°,理由见解析.
【解析】
(1)利用角平分线的定义可得出∠ECB=∠ACE,结合∠B=∠FAC可得出∠B+∠ECB=∠FAC+∠ACE,由三角形外角的性质可得出∠AEF=∠B+∠ECB,∠AFE=∠FAC+∠ACE,进而可得出∠AEF=∠AFE;
(2)由∠ACE=∠ACB,∠ACP=∠ACQ,可得出∠ECP=90°,进而可得出∠P+∠AEC=90°,结合(1)的结论及对顶角相等可得出∠P+∠CFD=90°,代入∠P=26°即可求出∠CFD的度数.
解:(1)∵CE平分∠ACB,
∴∠ECB=∠ACE,
∵∠B=∠FAC,
∴∠B+∠ECB=∠FAC+∠ACE.
又∵∠AEF=∠B+∠ECB,∠AFE=∠FAC+∠ACE,
∴∠AEF=∠AFE.
(2)∠CFD=64°,理由如下:
∵∠ACE=∠ACB,∠ACP=∠ACQ,
∴∠ECP=∠ACE+∠ACP=(∠ACB+∠ACQ)=90°,
∴∠P+∠AEC=90°.
∵∠AEF=∠AFE=∠CFD,
∴∠P+∠CFD=90°.
∵∠P=26°,
∴∠CFD=64°.
【题目】现如今,通过“微信运动“发布自己每天行走的步数,已成为一种时尚,“健身达人”小华为了了解他的微信朋友圈里大家的“建步走运动“情况,随机抽取了20名好友一天行走的步数,记录如下:
5640 | 6430 | 6320 | 6798 | 7325 | 8430 | 8215 | 7453 | 7446 | 6754 |
7638 | 6834 | 7325 | 6830 | 8648 | 8753 | 9450 | 9865 | 7290 | 7850 |
对这20个数据按组距1000进行分组,并统计整理,绘制了如下尚不完整的统计图表:
组别 | 步数分组 | 频数 |
A | 5500≤x<6500 | 2 |
B | 6500≤x<7500 | 10 |
C | 7500≤x | m |
D | 8500≤x<9500 | 2 |
E | 9500≤x<10500 | n |
请根据以上信息解答下列问题:
(1)填空:m= ,n= .
(2)补全频数分布直方图.
(3)根据以上统计结果,第二天小华随机查看一名好友行走的步数,试估计该好友的步数不低于7500步(含7500步)的概率.