题目内容
【题目】如图(1),公路上有A、B、C三个车站,一辆汽车从A站以速度v1匀速驶向B站,到达B站后不停留,以速度v2匀速驶向C站,汽车行驶路程y(千米)与行驶时间x(小时)之间的函数图象如图(2)所示.
(1)当汽车在A、B两站之间匀速行驶时,求y与x之间的函数关系式及自变量的取值范围;
(2)求出v2的值;
(3)若汽车在某一段路程内刚好用50分钟行驶了90千米,求这段路程开始时x的值.
【答案】(1)y=100x,(0<x<3);(2)120千米/小时;(3)这段路程开始时x的值是2.5小时.
【解析】试题分析:(1)根据函数图象设出一次函数解析式,运用待定系数法求出解析式即可;
(2)根据距离÷时间=速度计算;
(3)设汽车在A、B两站之间匀速行驶x小时,根据题意列出方程,解方程即可.
试题解析:(1)根据图象可设汽车在A、B两站之间匀速行驶时,y与x之间的函数关系式为y=kx,
∵图象经过(1,100),
∴k=100,
∴y与x之间的函数关系式为y=100x,(0<x<3);
(2)当y=300时,x=3,
4﹣3=1小时,420﹣300=120千米,
∴v2=120千米/小时;
(3)设汽车在A、B两站之间匀速行驶x小时,则在汽车在B、C两站之间匀速行驶(﹣x)小时,
由题意得,100x+120(﹣x)=90,
解得x=0.5,
3﹣0.5=2.5小时.
答:这段路程开始时x的值是2.5小时.
练习册系列答案
相关题目