题目内容

如图,在△ABC中,A、B两点关于直线DE对称;A、C两点关于直线DF对称,DE交AB于点E,交BC于点D;DF交AC于点F.
(1)试说明BD=CD;
(2)试判断四边形AEDF的形状,并说明理由.
(1)连接AD,
∵A、B两点关于直线DE对称,
∴BD=AD,
∵A、C两点关于直线DF对称,
∴CD=AD,
∴BD=CD.

(2)四边形AEDF是矩形.
理由是:∵D、E、F分别为BC、AB、AC的中点,
∴DEAC,DFAB,
∴四边形AEDF是平行四边形,
∵A、B两点关于直线DE对称,
∴∠AED=90°,
∴平行四边形AEDF是矩形.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网