题目内容
【题目】某工厂要加工甲、乙、丙三种型号机械配件共120个,安排20个工人刚好一天加工完成,每人只加工一种配件,设加工甲种配件的人数为x,加工乙种配件的人数为y,根据下表提供的信息,解答下列问题:
配件种类 | 甲 | 乙 | 丙 |
每人每天加工配件的数量个 | 8 | 6 | 5 |
每个配件获利元 | 15 | 14 | 8 |
求y与x之间的关系.
若这些机械配件共获利1420元,请求出加工甲、乙、丙三种型号配件的人数分别是多少人?
【答案】 ;加工甲、乙、丙三种型号配件的人数分别是5人、5人、10人.
【解析】
根据题意和表格中的数据可以写出y与x的函数关系式;
根据中的结果和表格中的数据可以分别求得加工甲、乙、丙三种型号配件的人数分别是多少人.
由题意可得,
,
化简,得
,
即y与x的函数关系式为;
由题意可得,
,
解得,,
,
,
答:加工甲、乙、丙三种型号配件的人数分别是5人、5人、10人.
【题目】某中学为了了解“校园文明监督岗”的值围情况,对全校各班级进行了抽样调查,过程如下:
收集数据:从三个年级中随机抽取了20个班级,学校对各班的评分如下:
92 71 89 82 69 82 96 83 77 83
80 82 66 73 82 78 92 70 74 59
整理、描述数据:按如下分数段整理、描述这两组样本数据:
分数段 | |||||
班级数 | 1 | 2 | a | 8 | b |
说明:成绩90分及以上为优秀,分为良好,分为合格,60分以下为不合格
分析数据:样本数据的平均数、中位数、众数、极差如下表,绘制扇形统计图:
平均数 | 中位数 | 众数 | 极差 |
79 | c | 82 | d |
请根据以上信息解答下列问题:
填空:______,______,______,______.
若我校共120个班级,估计得分为优秀的班级有多少个?
为调动班级积极性,决定制定一个奖励标准分,凡到达或超过这个标准分的班级都将受到奖励如果要使得半数左右的班级都能获奖,奖励标准分应定为多少分?并简述其理由