题目内容

【题目】如图,D为等边ABCBC上一点,DEABE,若BDCD=21DE=2 AE

【答案】4

【解析】试题分析:由等边三角的性质可得:AB=BC,∠B=60°,由DE⊥AB于E,可得:∠DEB=90°,∠BDE=30°,由直角三角形中30°角所对的直角边等于斜边的一半,可得:BD=2BE,然后由勾股定理可求BE和BD的值,再由BD:CD=2:1,可求CD的长,进而确定BC的长,由AB=BC即可求出AE的长.

试题解析:∵△ABC是等边三角形,

AB=BC,B=60°,

DEABE,

∴∠DEB=90°,

∴∠BDE=30°,

BD=2BE,

RtBDE中,设BE=x,则BD=2x,

DE=2

由勾股定理得:(2x2x2=22

解得:x=2,

所以BE=2,BD=4,

BD:CD=2:1,

CD=2,

BC=BD+CD=6,

AB=BC,

AB=6,

AE=AB﹣BE

AE=6﹣2=4.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网