题目内容
【题目】一艘观光游船从港口A处以北偏东60°的方向出港观光,航行80海里至C处时发生了侧翻沉船事故,立即发出了求救信号.一艘在港口正东方向B处的海警船接到求救信号,测得事故船在它的北偏东37°方向.
(1)求海警船距离事故船C的距离BC.
(2)若海警船以40海里/小时的速度前往救援,求海警船到达事故船C处大约所需的时间.(温馨提示:sin 53°≈0.8,cos 53°≈0.6)
【答案】(1)50海里,(2)小时.
【解析】
过点C作CD⊥AB交AB延长线于D.先解Rt△ACD得出CD=AC=40海里,再解Rt△CBD中,得出BC=≈50,然后根据时间=路程÷速度即可求出海警船到大事故船C处所需的时间.
如图,过点C作CD⊥AB交AB延长线于D.
在Rt△ACD中,∵∠ADC=90°,∠CAD=30°,AC=80海里,
∴CD=AC=40海里.
在Rt△CBD中,∵∠CDB=90°,∠CBD=90°-37°=53°,
∴BC=≈=50(海里),
∴海警船到大事故船C处所需的时间大约为:50÷40=(小时).
练习册系列答案
相关题目
【题目】小东根据学习函数的经验,对函数的图象与性质进行了探究.下面是小东的探究过程,请补充完整,并解决相关问题:
(1)函数的自变量x的取值范围是 ;
(2)下表是y与x的几组对应值.
x | … | 0 | 1 | 2 | 3 | 4 | … | ||||||
y | … | 2 | 4 | 2 | m | … |
表中m的值为________________;
(3)如图,在平面直角坐标系中,描出了以上表中各对对应值为坐标的点. 根据描出的点,画出函数的大致图象;
(4)结合函数图象,请写出函数的一条性质:______________________.
(5)解决问题:如果函数与直线y=a的交点有2个,那么a的取值范围是______________ .