题目内容
【题目】如图,已知AB∥CD,F为CD上一点,∠EFD=60°,∠AEC=2∠CEF,若6°<∠BAE<15°,∠C的度数为整数,则∠C的度数为_____.
【答案】36°或37°.
【解析】分析:先过E作EG∥AB,根据平行线的性质可得∠AEF=∠BAE+∠DFE,再设∠CEF=x,则∠AEC=2x,根据6°<∠BAE<15°,即可得到6°<3x-60°<15°,解得22°<x<25°,进而得到∠C的度数.
详解:如图,过E作EG∥AB,
∵AB∥CD,
∴GE∥CD,
∴∠BAE=∠AEG,∠DFE=∠GEF,
∴∠AEF=∠BAE+∠DFE,
设∠CEF=x,则∠AEC=2x,
∴x+2x=∠BAE+60°,
∴∠BAE=3x-60°,
又∵6°<∠BAE<15°,
∴6°<3x-60°<15°,
解得22°<x<25°,
又∵∠DFE是△CEF的外角,∠C的度数为整数,
∴∠C=60°-23°=37°或∠C=60°-24°=36°,
故答案为:36°或37°.
练习册系列答案
相关题目