题目内容
【题目】如图,∠AOB=α°,点P是∠AOB内任意一点,OP=6cm,点M和点N分别是射线OA和射线OB上的动点,若△PMN周长的最小值是6cm,则α的值是( )
A.15
B.30
C.45
D.60
【答案】B
【解析】解:分别作点P关于OA、OB的对称点C、D,连接CD,
分别交OA、OB于点M、N,连接OC、OD、PM、PN、MN,如图所示:
∵点P关于OA的对称点为D,关于OB的对称点为C,
∴PM=DM,OP=OD,∠DOA=∠POA;
∵点P关于OB的对称点为C,
∴PN=CN,OP=OC,∠COB=∠POB,
∴OC=OP=OD,∠AOB=∠COD,
∵△PMN周长的最小值是6cm,
∴PM+PN+MN=6,
∴DM+CN+MN=6,
即CD=6=OP,
∴OC=OD=CD,
即△OCD是等边三角形,
∴∠COD=60°,
∴∠AOB=30°;
故选:B.
【考点精析】通过灵活运用轴对称-最短路线问题,掌握已知起点结点,求最短路径;与确定起点相反,已知终点结点,求最短路径;已知起点和终点,求两结点之间的最短路径;求图中所有最短路径即可以解答此题.
练习册系列答案
相关题目