题目内容
【题目】如图1,点E为正方形ABCD的边AB上一点,EF⊥EC,且EF=EC,连接AF.过点F作FN垂直于BA的延长线于点N.
(1)求∠EAF的度数;
(2)如图2,连接FC交BD于M,交AD于N.猜想BD,AF,DM三条线段的等量关系,并证明.
【答案】(1)∠EAF=135°;(2)BD= AF+2DM,证明见解析
【解析】
(1)证明△EBC≌△FNE,根据全等三角形的对应边相等和正方形的临边相等可证明NA=NF,由此可证△NAF为等腰直角三角形,可求得∠EAF;
(2)过点F作FG∥AB交BD于点G,证明四边形ABGF为平行四边形和△FGM≌△CDM,即可证得结论.
(1)解:∵四边形ABCD是正方形,FN垂直于BA的延长线于点N,
∴∠B=∠N=∠CEF=90°,BC=AB=CD,
∴∠NEF+∠CEB=90°,∠CEB+∠BCE=90°,
∴∠NEF=∠ECB,
∵EC=EF,
∴△EBC≌△FNE,
∴FN=BE, EN=BC ,
∴EN=AB,
∴EN﹣AE=AB﹣AE
∴AN=BE,
∴FN=AN,
∵FN⊥AB,
∴∠NAF=45°,
∴∠EAF=135°.
(2)三条线段的等量关系是BD=AF+2DM.
证明:过点F作FG∥AB交BD于点G.
由(1)可知∠EAF=135°,
∵∠ABD=45°
∴∠EAF=135°+∠ABD=180°,
∴AF∥BG,
∵FG∥AB,
∴四边形ABGF为平行四边形,
∴AF=BG,FG=AB,
∵AB=CD,
∴FG=CD,
∵AB∥CD,
∴FG∥CD,
∴∠FGM=∠CDM,
∵∠FMG=∠CMD
∴△FGM≌△CDM,
∴GM=DM,
∴DG=2DM,
∴BD=BG+DG=AF+2DM.
练习册系列答案
相关题目