题目内容

【题目】如图为两正方形ABCD、CEFG和矩形DFHI的位置图,其中D,A两点分别在CG、BI上,若AB=3,CE=5,则矩形DFHI的面积是_____

【答案】

【解析】

由题意先求出DG和FG的长,再根据勾股定理可求得DF的长,然后再证明△DGF∽△DAI,依据相似三角形的性质可得到DI的长,最后依据矩形的面积公式求解即可.

四边形ABCD、CEFG均为正方形,

∴CD=AD=3,CG=CE=5,

∴DG=2,

Rt△DGF中, DF==

∵∠FDG+∠GDI=90°,∠GDI+∠IDA=90°,

∴∠FDG=∠IDA.

∵∠DAI=∠DGF,

∴△DGF∽△DAI,

,即,解得:DI=

矩形DFHI的面积是=DFDI=

故答案为:

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网