题目内容
【题目】已知数轴上两点A、B所表示的数分别为a和b,且满足|a+3|+(b-9)2018=0,O为原点
(1) 试求a和b的值
(2) 点C从O点出发向右运动,经过3秒后点C到A点的距离是点C到B点距离的3倍,求点C的运动速度?
(3) 点D以1个单位每秒的速度从点O向右运动,同时点P从点A出发以5个单位每秒的速度向左运动,点Q从点B出发,以20个单位每秒的速度向右运动.在运动过程中,M、N分别为PD、OQ的中点,问的值是否发生变化,请说明理由.
【答案】(1) a=-3,b=9;(2)每秒5个单位或每秒2个单位;(3) 为定值,理由见解析
【解析】
(1) 根据非负数的和等于零,可得每个非负数同时为零,从而a=-3,b=9;
(2)设C点对应的数为x,CA=x-(-3)=x+3,由于点C存在在B点左侧和右侧两种情况,故CB的长为|x-9|,根据CA=3CB列式即可求出x,从而求得运动速度;
(3设运动时间为t秒,用含t的代数式分别表示PQ、OD、MN,然后代入求值即可判断.
(1) a=-3,b=9
(2) 设3秒后,点C对应的数为x
则CA=|x+3|,CB=|x-9|
∵CA=3CB
∴|x+3|=3|x-9|=|3x-27|
当x+3=3x-27,解得x=15,此时点C的速度为
当x+3+3x-27=0,解得x=6,此时点C的速度为
(3) 设运动的时间为t
点D对应的数为:t
点P对应的数为:-3-5t
点Q对应的数为:9+20t
点M对应的数为:-1.5-2t
点N对应的数为:4.5+10t
则PQ=25t+12,OD=t,MN=12t+6
∴为定值.
故答案为:(1) a=-3,b=9;(2)每秒5个单位或每秒2个单位;(3) 为定值.
【题目】某商店三、四月份出售同一品牌各种规格空调销售台输入下表,回答:
匹 | 匹 | 匹 | 匹 | |
三月 | ||||
四月 |
商店平均每月销售空调________台;
商店出售各种规格的空调中,众数有________匹;
在研究六月份进货时,商店经理决定________(匹)的空调要多进,________(匹)的空调要少进.
【题目】为了鼓励居民节约用水,某市自来水公司对每户月用水量进行计费,每户每月用水量在规定吨数以下的收费标准相同;规定吨数以上的超过部分收费标准相同,以下是小明家月份用水量和交费情况:
月份 | |||||
用水量(吨) | |||||
费用(元) |
根据表格中提供的信息,回答以下问题:
求出规定吨数和两种收费标准;
若小明家月份用水吨,则应缴多少元?
若小明家月份缴水费元,则月份用水多少吨?